Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:37:57.605Z Has data issue: false hasContentIssue false

Films and Devices Deposited by Hwcvd at Ultra High Deposition Rates

Published online by Cambridge University Press:  17 March 2011

A. H. Mahan
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
Y. Xu
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
E. Iwaniczko
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
D. L. Williamson
Affiliation:
Physics Department, Colorado School of Mines, Golden, CO 80401, USA
J. D. Perkins
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
M. Vanecek
Affiliation:
Inst. Of Physics, Czech Academy of Sciences, Prague 6, Czech Republic
L. M. Gedvilas
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
B. P. Nelson
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
Get access

Abstract

The structure of a-Si:H, deposited at rates in excess of 100Å/s by the hot wire chemical vapor deposition (HWCVD) technique, has been examined by x-ray diffraction (XRD), Raman spectroscopy, H evolution, and small-angle x-ray scattering (SAXS). As the film deposition rate (Rd) is increased, we find that the XRD, Raman and the H evolution peak curves are invariant with Rd, and exhibit structure consistent with state-of-the-art, compact a-Si:H films deposited at low Rd. The only exception is the SAXS signal, which increases by a factor of ∼100 over that for our best low Rd films. We relate changes in the film electronic structure (Urbach edge) to the increase in the SAXS signals. We also note the invariance of the saturated defect density versus Rd, and discuss possible reasons why the increase in the SAXS does not play a role in the Staebler-Wronski Effect for this type of material. Finally, device results are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guha, S., NREL/SR-520-24723, 15 (1998).Google Scholar
2. Jones, S. J., Deng, X., Liu, T., and Izu, M., MRS Symp. Proc. 507, 113 (1998).Google Scholar
3. Mahan, A. H., Reedy, R. C. Jr, Iwaniczko, E., Wang, Q., Nelson, B. P., Xu, Y., Gallagher, A. C., Branz, H. M., Crandall, R. S., Yang, J., and Guha, S., MRS Symp. Proc. 507, 119 (1998).Google Scholar
4. Nelson, B. P., Xu, Y., Mahan, A. H., Williamson, D. L., and Crandall, R. S., MRS Symp. Proc. 609 (2000), in press.Google Scholar
5. Mahan, A. H., Williamson, D. L., and Furtak, T. E., MRS Symp. Proc. 467, 657 (1997).Google Scholar
6. Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).10.1103/PhysRevB.32.874Google Scholar
7.W. Beyer and Wagner, H., J. Appl. Phys. 53, 8745 (1982).Google Scholar
8. Mahan, A. H., Xu, Y., Williamson, D. L., Beyer, W., Perkins, J. D., Gedvilas, L. M., and Nelson, B. P., submitted to Phys. Rev. B (2001).Google Scholar
9. Wang, Q., Iwaniczko, E., Xu, Y., Gao, W., Nelson, B. P., Mahan, A. H., Crandall, R. S., and Branz, H. M., MRS Symp. Proc. 609 (2000), in press.Google Scholar
10. Berntsen, A. J. M., Ph. D. Thesis, Utrecht University (1993), pg. 32.Google Scholar
11. Liu, X., Pohl, R. O., and Crandall, R. S., MRS Symp. Proc. 557, 323 (1999).10.1557/PROC-557-323Google Scholar
12. Mahan, A. H. and Vanecek, M., AIP Conf. Proc. 234, 195 (1991).Google Scholar
13. Jones, S. J., Deng, X., Liu, T., and Izu, M., MRS Symp. Proc. 507, 113 (1998).Google Scholar
14. Mahan, A. H., Iwaniczko, E., Nelson, B. P., Reedy, R. C. Jr, Crandall, R. S., Guha, S., and Yang, J., Proc. 25th IEEE PV Spec. Conf., 1065 (1996).Google Scholar
15. Bhattacharya, E. and Mahan, A. H., Appl. Phys. Lett. 52, 1587 (1988).10.1063/1.99089Google Scholar
16. Mahan, A. H., Menna, P., and Tsu, R., Appl. Phys. Lett. 51, 1167 (1987).Google Scholar
17. Mahan, A. H., Mascarenas, A., Williamson, D. L., and Crandall, R. S., MRS Symp. Proc. 118, 641 (1988).Google Scholar
18. Carlson, D. E., Appl. Phys. A 41, 305 (1986).Google Scholar
19. Mahan, A. H., Xu, Y., Nelson, B. P., Cohen, J. D., Palinginis, K. C., Crandall, R. S., and Gallagher, A. C., accepted for publication in Appl. Phys. Lett. (2001).Google Scholar
20. Vanecek, M., Remes, Z., Fric, J., Crandall, R. S., and Mahan, A. H., Proc. 12th European PV Solar Energy Conference (1994), p. 354.Google Scholar
21. Guha, S., Yang, J., Jones, S. J., Chen, Y., and Williamson, D. L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
22. Williamson, D. L., MRS Symp. Proc. 377, 251 (1995).Google Scholar
23. Beyer, W., Semiconductors and Semimetals 61, 165 (1999).Google Scholar
24. Guha, S., Yang, J., Jones, S. J., Chen, Y., and Williamson, D. L., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
25. Yang, J., Xu, X., and Guha, S., MRS Symp. Proc. 336, 687 (1994).Google Scholar