Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:04:21.207Z Has data issue: false hasContentIssue false

Field-induced phase transition and its impact on the magnetoelectric effect in P(VDF-HFP)/Metglas laminates

Published online by Cambridge University Press:  31 January 2011

David Sheng-Guo Lu
Affiliation:
[email protected][email protected], The Pennsylvania State University, Materials Research Institute, University Park, Pennsylvania, United States
Xin Zhou
Affiliation:
[email protected], The Pennsylvania State University, Materials Research Institute and Department of Electrical Engineering, University Park, Pennsylvania, United States
Zhao Fang
Affiliation:
[email protected], The Pennsylvania State University, Materials Research Institute and Deoartment of Electrical Engineering, University Park, Pennsylvania, United States
Qiming Zhang
Affiliation:
[email protected], The Pennsylvania State University, Materials Research Institute and Department of Electrical Engineering, University Park, Pennsylvania, United States
Get access

Abstract

The field-induced phase transition driven by electric field was observed in poly(vinylidene fluoride – hexafluoropropylene) (P(VDF-HFP)) 90/10 wt% copolymers. Experimental results indicated that the electric field may remarkably affect the remanent polarization in terms of changing the D-E loop forms from double loops to single loop, starting from 68 MV/m, and completing at 216 MV/m. It was found that the remanent polarization as well as the piezoelectric constant d31 had a linear relationship with the poling electric field in above electric field range. Thus the magnetoelectric (ME) coupling coefficient ME in P(VDF-HFP)/Metglas laminates increased with the poling electric field. Moreover, the cyclic poled ME device demonstrated different peak d.c. magnetic bias field HDC on the ME - HDC curves from conventional room temperature poled ones. The peak ME coefficient obtained was 4 V/cm Oe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramesh, R. and Spaldin, N. A., Nature Mater. 6, 21 (2007).Google Scholar
2 Eerenstein, W., Mathur, N. D., and Scott, J. F., Nature, 442, 759 (2006).Google Scholar
3 Guo, S. S., Lu, S. G., Xu, Z., Zhao, X. Z., and Or, S. W., Appl. Phys. Lett. 88, 182906 (2006).Google Scholar
4 Ryu, J., Priya, S., Carazo, A. V., Uchino, K., Kim, H. E., J. Amer. Ceram. Soc. 84, 2905 (2001).Google Scholar
5 Nan, C. W., Bichurin, M. I., Dong, S. X., Viehland, D., and Srinivasan, G., J. Appl. Phys. 103, 031101 (2008).Google Scholar
6 Zhai, J. Y., Xing, Z. P., Dong, S. X., Li, J. F., and Viehland, D., Appl. Phys. Lett. 88, 062510 (2006).Google Scholar
7 Zhai, J. Y., Xing, D. P., Dong, S. X., Li, J. F., and Viehland, D., J. Am. Ceram. Soc. 91, 351, (2008).Google Scholar
8 Fang, Z., Lu, S. G., Zhang, Q. M., and Tahchi, M. El, Appl. Phys. Lett. 95, 112903 (2009).Google Scholar
9 Lovinger, A. J., Science, 220, 1115 (1983).Google Scholar
10 Zhou, X., Chu, B. J., Neese, B., Lin, M. R. and Zhang, Q. M., IEEE Trans. Diel Ele. Ins. 14, 1133 (2007).Google Scholar
11 Künstler, W., Wegener, M., Seiß, M., Gerhard-Multhaupt, R., Appl. Phys. A 73, 641 (2001).Google Scholar
12 Bauer, F., IEEE Trans. Ultra. Ferroelect. Freq. Cont. 47, 1448 (2000).Google Scholar
13 Lovinger, A. J., Davis, G. T., Furukawa, T., and Broadhurst, M. G., Macromolecules, 15, 323 (1982).Google Scholar
14 Zhang, Q. M., Pan, W. Y., Jang, S. J., and Cross, L. E., J. Appl. Phys. 64, 6445 (1988).Google Scholar
15 Jung, K., Kim, K. J., and Choi, H. R., Sens. Actuators. A 143, 343 (2008).Google Scholar
16 Dong, S. X., Zhai, J. Y., Li, J. F., and Viehland, D., Appl. Phys. Lett. 89, 252904 (2006).Google Scholar