Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:49:37.918Z Has data issue: false hasContentIssue false

Field Emission Properties of Large Area Carbon Nanotube Cathodes in DC and Pulse Modes

Published online by Cambridge University Press:  01 February 2011

Qingliang Liao
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, 30 Xueyuan Road, Haidian District, Beijing, 100083, China, People's Republic of
Yue Zhang
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Liansheng Xia
Affiliation:
[email protected], Chinese Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, 621900, China, People's Republic of
Junjie Qi
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Yunhua Huang
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Zi Qin
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Ya Yang
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Zhanjun Gao
Affiliation:
[email protected], University of Science and Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Department of Materials Physics, Beijing, 100083, China, People's Republic of
Get access

Abstract

A large area carbon nanotube cathode was fabricated by use of a screen printing method. The emission properties of the cathode were investigated in both direct current and pulse mode experiments. In the direct current mode, the cathode has high field enhancement factor and high emission current density. In the double-pulse mode, the emission current density can approach 267 A/cm2 at an applied electric field of 15.4 V/um. Steady intense electron beams were obtained from the cathode. The results proved that the emission mechanism of CNTs at pulse electric field is plasma-induced field emission. The carbon nanotube cathode is suitable for not only field emission display applications but also high-power microwave device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Bonard, J. M., Croci, M., Klinke, C., Kurt, R., Noury, O. and Weiss, N., Carbon 40, 1715 (2002).Google Scholar
3. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S. and Kim, J. M., Appl. Phys. Lett. 75, 3129 (1999)Google Scholar
4. Liu, Z., Yang, G., Lee, Y. Z., Bordleon, D., Lu, J. and Zhou, O., Appl. Phys. Lett. 89, 103111 (2006).Google Scholar
5. Heer, W. A. De, Chatelain, A. and Ugarte, D., Science 270, 1179 (1995).Google Scholar
6. Zhu, W., Bower, C., Zhou, O., Kochanski, G. and Jin, S., Appl. Phys. Lett. 75, 873 (1999).Google Scholar
7. Chen, Y., Shaw, D. T. and Guo, L. P.,Appl. Phys. Lett. 76, 2469 (2000).Google Scholar
8. Bonard, J. M., Maier, F., Stockli, T., Chatelain, A., Heer, W. A. De, Salvetat, J. P. and Laszlo, F., Ultramicroscopy 73, 7 (1998).Google Scholar
9. Lee, C. J., Lee, T. J., Lyu, S. C., Zhang, Y., Ruh, H. and Lee, H. J., Appl. Phys. Lett. 81: 3648 (2002).Google Scholar
10. Chen, Z., Bachmann, P. K., Engelsen, D. D., Koehler, I. and Wiechert, D. U., Carbon 44, 225 (2006).Google Scholar
11. Fowler, R. H. and Nordheim, L. W., Proc. Roy. Soc. A119: 173 (1928).Google Scholar
12. Vieira, S. M. C, Teo, K. B. K., Milne, W. I, Groning, O., Gangloff, L., Minoux, E. and Legagneux, P., Appl. Phys. Lett. 89, 022111–1 (2006).Google Scholar
13. Zhang, Z., Yuan, H., Zhou, J., Liu, D., Luo, S., Miao, Y., Gao, Y., Wang, J., Liu, L., Song, L., Xiang, Y., Zhao, X., Zhao, W. and Xie, S., J. Phys. Chem. B 110, 8566 (2006).Google Scholar
14. Krasik, Y. E., Gleizer, J. Z., Yarmolich, D., Krokhmal, A., Gurovich, V. T., Efimov, S., Felsteiner, J., Bernshtam, V. and Saveliev, Y. M., J. Appl. Phys. 98, 093308 (2005).Google Scholar
15. Krasik, Y. E., Dunaevsky, A., Krokhmal, A., Felsteiner, J., Gunin, A. V., Pegel, I. V., and Korovin, S. D., J. Appl. Phys. 89, 2379 (2001).Google Scholar
16. Parker, P. K., Anderson, R. E. and Duncan, C. V., J. Appl. Phys. 45, 2463 (1974).Google Scholar
17. Miller, R. B., J. Appl. Phys. 84, 3880 (1998).Google Scholar
18. Sergey, K., AIP Conf. Proc. 650, 385 (2002).Google Scholar
19. Xia, L., Zhang, K., Shi, J. and Zhang, L., Appl. Surf. Sci. 251, 262 (2005).Google Scholar
20. Shiffler, D., Ruebush, M., Zagar, D., Lacour, M., Sena, M., Golby, K., Lacour, M., Sena, M., Golby, K., Haworth, M. and Umstattd, R., J. Appl. Phys. 91, 5599 (2002).Google Scholar
21. Purcell, S. T., Vincent, P., Journet, C. and Binh, V. T., Phy. Rev. Lett. 88, 105502–1 (2002).Google Scholar
22. Elim, H. I., Ji, W., Ma, G. H., Lim, K. Y., Sow, C. H. and Huan, C. H. A., Appl. Phys. Lett. 85, 1799 (2004).Google Scholar