Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:46:29.806Z Has data issue: false hasContentIssue false

Ferroelectric-Specific Peptides as Building Blocks for Bio-Inorganic Devices

Published online by Cambridge University Press:  01 February 2011

Brian Dennis Reiss
Affiliation:
[email protected], Argonne National Laboratory, Center for Nanoscale Materials and Materials Science Division, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Leonidas Ocola
Affiliation:
[email protected], Argonne National Laboratory, Center for Nanoscale Materials, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Orlando Auciello
Affiliation:
[email protected], Argonne National Laboratory, Center for Nanoscale Materials, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Millicent A. Firestone
Affiliation:
[email protected], Argonne National Laboratory, Center for Nanoscale Materials, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Get access

Abstract

The integration of biomolecules with inorganic materials to create functional composites represents a critical step in the development of next-generation biosensors, micro/nanofluidic devices, and biochips that require a combination of abiotic (inorganics) and biotic (proteins, DNA, antibodies) components. Toward this end, we have previously applied combinatorial phage display techniques to identify a constrained heptapeptide sequence (CISLLHSTC) that selectively binds to a perovskite ferroelectric (MOCVD-deposited lead zirconium titanate, PZT). In this work, we examine the binding of this heptapeptide sequence, prepared by solid phase peptide synthesis to sol-gel PZT. In particular, the surface roughness has been examined and the long-term stability of the PZT films in biological buffered aqueous solutions by atomic force microscopy, X-ray diffraction and P-E hysteresis loop. In addition, the selectivity of the peptide binding to PZT has been determined by immunofluorescence microscopy and the nature of peptide binding to the PZT surface is probed by X-ray photoemission spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K., and Baneyx, F., Nat Mater 2, 577 (2003).Google Scholar
2 Sano, K. I. and Shiba, K., J Am Chem Soc 125, 14234 (2003).Google Scholar
3 Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F., and Belcher, A. M., Nature 405, 665 (2000); K. Goede, P. Busch, and M. Grundmann, Nano Lett4, 2115 (2004).Google Scholar
4 Reiss, B. D., Bai, G. -R., Auciello, O., Ocola, L. E., and Firestone, M. A., Appl. Phys. Lett. 88, 083903 (2006).Google Scholar
5 Sanghvi, A. B., Miller, K. P. H., Belcher, A. M., and Schmidt, C. E., Nat Mater 4, 496 (2005); T. Serizawa, T. Sawada, H. Matsuno, T. Matsubara, and T. Sato, J. Amer. Chem. Soc. 127, 13780 (2005).Google Scholar
6 Kase, D., Kulp, J. L., Yudasaka, M., Evans, J. S., Iijima, S., and Shiba, K., Langmuir 20, 8939 (2004).Google Scholar
7 Reiss, B. D., Mao, C. B., Solis, D. J., Ryan, K. S., Thomson, T., and Belcher, A. M., Nano Lett 4, 1127 (2004).Google Scholar
8 Sano, K., Sasaki, H., and Shiba, K., J. Amer. Chem. Soc. 128, 1717 (2006); P. J. Yoo, K. T. Nam, J. Qi, S. -K. Lee, J. Park, A. M. Belcher, and P. T. Hammond, Nature Mater. 5, 234 (2006).Google Scholar
9 Willett, R. L., Baldwin, K. W., West, K. W., and Pfeiffer, L. N., P Natl Acad Sci USA 102, 7817 (2005); T. Hayashi, K. -I. Sano, K. Shiba, Y. Kumashiro, K. Iwahori, I. Yamashita, and M. Hara, Nano Lett 6, 515 (2006).Google Scholar
10 Ocola, L. E., Pan, W. C., Kuo, M., Tirumala, V. R., Reiss, B. D., Firestone, M. A., and Auciello, O., NSTI-Nanotech 3, 439 (2005).Google Scholar
11 Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys. 64, 2717 (1988).Google Scholar
12 Atherton, E. and Sheppard, R. C., Solid Phase Peptide Synthesis: A Practical Approach. (IRL Press, Oxford, 1989).Google Scholar
13 Auciello, O., Krauss, A. R., Im, J., and Schultz, J. A., Annu. Rev. Mater. Sci. 28, 375 (1998).Google Scholar
14 Auciello, O., Foster, C. M., and Ramesh, R., Annu. Rev. Mater. Sci. 28, 501 (1998).Google Scholar
15 Chen, W. P., Chan, H. L. W., Yiu, F. C. H., Ng, K. M. W., and Liu, P. C. K., Applied Physics Letters 80, 3587 (2002).Google Scholar
16 Chen, W. P., Li, L. T., Wang, Y., and Gui, Z. L., Journal of Materials Research 13, 1110 (1998).Google Scholar
17 Shimakawa, Y. and Kubo, Y., Appl Phys Lett 77, 2590 (2000).Google Scholar
18 Aratani, M., Oikawa, T., Ozeki, T., and Funakubo, H., Applied Physics Letters 79, 1000 (2001); D. Akai, M. Yokawa, K. Hirabayashi, K. Matsushita, K. Sawada, and M. Ishida, Applied Physics Letters 86, 202906 (2005).Google Scholar
19 Auciello, O., Foster, C. M., and Ramesh, R., Annual Review of Materials Science 28, 501 (1998).Google Scholar