Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:45:45.035Z Has data issue: false hasContentIssue false

Ferroelectric Thin Films by sol-gel Processing

Published online by Cambridge University Press:  21 February 2011

S. L. Swartz
Affiliation:
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201
P. J. Melling
Affiliation:
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201
C. S. Grant
Affiliation:
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201
Get access

Abstract

The sol-gel processing of ferroelectric thin films is being investigated at Battelle. The ferroelectric materials included in this study are PbTiO3, Pb(Zr, Ti)O3 (PZT), and KNbO3. The sol-gel processing and crystallization of these films on fused silica, silicon, alumina, and single crystal SrTiO3 substrates is described.

Sol-gel derived PbTiO3 thin films crystallized into the expected tetragonal perovskite structure when heated to 500 C and above. However, the crystallization of sol-gel PZT (20/80) thin films was found to be substratedependent. The heat-treated PZT films were amorphous when deposited on silica and silicon substrates. Crystalline perovskite PZT films were produced on alumina substrates, and epitaxial PZT films were produced on single-crystal SrTiO3. Heat treatment of sol-gel KNbO3 films on silicon and alumina substrates resulted in the crystallization of a variety of non-perovskite phases, but epitaxial growth of KNbO3 was observed on single crystal SrTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kushida, K. and Takeuchi, H., Jpn. J. Appl. Phys., 24 (suppl. 24-2), 407409 (1985).CrossRefGoogle Scholar
2. IIjima, K., et al., Jpn. J. Appl. Phys., 24 (suppl. 24-2), 482484 (1985).Google Scholar
3. Okuyama, M., et al., Jpn. J. Appl. Phys., 24 (suppl. 24-2), 619621 (1985).Google Scholar
4. Krupanidhi, S.B., et al., J. Appl. Phys., 54 (11), 66016609 (1983).Google Scholar
5. Adachi, M., et al., Jpn. J. Appl. Phys., 26 (4), 550553 (1987).Google Scholar
6. Sreenivas, K. and Sayer, M., J. Appl. Phys., 64 (3), 14841493 (1988).Google Scholar
7. Kawaguchi, T., et al., Appl. Optics, 23 (13), 21872191 (1984).Google Scholar
8. Higashino, H., et al., Jpn. J. Appl. Phys., 24 Suppl. 24-2), 284–286 (1985).CrossRefGoogle Scholar
9. Adachi, H., et al., J. Appl. Phys., 60 (2), 736741 (1986).Google Scholar
10. Kojima, M., et al., Jpn. J. Appl. Phys. 22 (22-2), 1417 (1983).Google Scholar
11. Swartz, S.L., et al., to appear in Ferroelectrics (1988).Google Scholar
12. Kwak, B.S., et al., Appl. Phys. Lett. 53 (18), 17021704 (1988).CrossRefGoogle Scholar
13. Budd, K.D., Dey, S.K., and Payne, D.A., Br. Ceram. Proc., No. 36, 107121 (1985).Google Scholar
14. Budd, K.D., et al., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater Res. Soc. Proc. 73, Pittsburgh, PA 1986), pp. 711716.Google Scholar
15. Dey, S.K., et al., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 35 (1), 8081 (1983).Google Scholar
16. Lipeles, R.A., et al., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater Res. Soc. Proc. 73, Pittsburgh, PA 1986), pp. 665670.Google Scholar
17. Yi, G., Wu, Z., and Sayer, M., J. Appl. Phys., 64 (5), 27172724 (1988).CrossRefGoogle Scholar
18. Bartlow, D.P. and Greggi, J., J. Mater. Res. 2 (5), 595605 (1987).Google Scholar