Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T07:38:44.143Z Has data issue: false hasContentIssue false

Fermi Level Inhomogeneities on GaAs(110) Surface Imaged with a Photoelectron Microscope

Published online by Cambridge University Press:  25 February 2011

Changyoung Kim
Affiliation:
Stanford Synchrotron Radiation Laboratory P.O. Box 4349, Bin 99, Stanford, CA94309
Piero Pianetta
Affiliation:
Stanford Synchrotron Radiation Laboratory P.O. Box 4349, Bin 99, Stanford, CA94309
Get access

Abstract

A photoelectron microscope operating with a retarding field analyzer has been used to exploit core level energy shifts due to band bending in order to directly image Fermi level variations on n- and p-type cleaved GaAs(110) surfaces. Fermi level maps resolved to better than 10 um indicate lateral variations in the surface Fermi level which are often quite abrupt. In agreement with earlier, lower resolution work [1], Fermi level topography is found to be highly correlated with surface roughness as characterized by SEM, optical microscope and stylus profi lometer. The largest defect derived pinnings encountered to date resut in the Fermi level lying 0.5 eV above the VBM for both n- and p-type GaAs. Low coverage In evaporations have the. effect of reducing Fermi level contrast as Fermi levels in formerly unpinned regions move into the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palau, J. M., Testemale, E., and Lassabatere, L., J. Vac. Sci. Technol., 19, 192(1981).Google Scholar
2. Van Laar, J. and Huijser, A.,, J. Vac. Sci. Technol., 13, 769(1976).CrossRefGoogle Scholar
3. Spicer, W. E., Lindau, I., Gregory, P. E., Garner, D. M., Pianetta, P., and Chye, P., J. Vac. Sci. Technol., 13, 780(1976).CrossRefGoogle Scholar
4. Gudat, W. and Eastman, D. E., J. Vac. Sci. Technol. 13, 831 (1976)Google Scholar
5. Auckerman, L. W., Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic, New York, 1973), Vol 4, p 343 Google Scholar
6. Lassabatere, L., Palau, J. M., Vieujot-Testemale, E., Ismail, A., Raisi, C., Bonnet, J. and Soonckindt, L., J. Vac. Sci. Technol. B1, 540(1983).Google Scholar
7. Ismail, A., Ben Brahim, A., Palau, J. M. and Lassabatere, L., Surf. Sci. 162, 195(1985)CrossRefGoogle Scholar
8. King, P. L., Borg, A., Kim, C., Yoshikawa, S. A., Pianetta, P. and Lindau, I., Ultramicroscopy 36, 117(1991).CrossRefGoogle Scholar
9. Pianetta, P., Lindau, I., King, P. L., Keenlyside, M., Knapped, G. and Browning, R., Rev. Sci. Instru. 60, 1686(1989)CrossRefGoogle Scholar
10. Chin, K. K., Kendelewicz, T., Newman, N., Lindau, I. and Spicer, W. E., J. Vac. Sci. Technol. B4, 955(1986).Google Scholar
11. Spicer, W. E., Lileental-Weber, Z., Weber, E., Newman, N., Kendelewicz, T., McCants, C., Cao, R., Mahowald, P., Miyano, K. and Lindau, I., J. Vac. Sci. Technol. B6, 1062(1987).Google Scholar
12. Walukiewicz, W., J. Vac. Sci. Technol. B5, 1062(1987).Google Scholar
13. Street, R. A., Williams, R. H. and Bauer, R. S., J. Vac. Sci. Technol. 17, 1001(1980).Google Scholar