Published online by Cambridge University Press: 26 February 2011
Dislocation formation in InAs1−xSbx buffer layers grown on InSb substrates by metal-organic chemical vapor deposition is shown to be reproducibly enhanced by p-type doping at levels exceeding the intrinsic carrier concentration at the growth temperature. To achieve a carrier concentration greater than 2 × 1018 cm−3, the intrinsic carrier concentration of InSb at 475 C, p-type doping with diethylzinc was used. Carrier concentrations up to 6 × 1018 cm−3 were obtained. The zinc doped buffer layers have proven to be reproducibly crack free for InAs1−xSbx step graded buffer layers with a final composition of x = 0.12 lattice matched to a strained layer superlattice (SLS) with an average composition of x = 0.09. These structures have been used to prepare infrared photodiodes. Details of the buffer layer growth, an explanation for the observed Fermi level effect and the growth and characterization of an infrared photodiode are discussed.