Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:41:12.616Z Has data issue: false hasContentIssue false

Fermi Level Effects on Dislocation Formation in InAs1−xSbx Grown by MOCVD

Published online by Cambridge University Press:  26 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM
T. J. Drummond
Affiliation:
Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

Dislocation formation in InAs1−xSbx buffer layers grown on InSb substrates by metal-organic chemical vapor deposition is shown to be reproducibly enhanced by p-type doping at levels exceeding the intrinsic carrier concentration at the growth temperature. To achieve a carrier concentration greater than 2 × 1018 cm−3, the intrinsic carrier concentration of InSb at 475 C, p-type doping with diethylzinc was used. Carrier concentrations up to 6 × 1018 cm−3 were obtained. The zinc doped buffer layers have proven to be reproducibly crack free for InAs1−xSbx step graded buffer layers with a final composition of x = 0.12 lattice matched to a strained layer superlattice (SLS) with an average composition of x = 0.09. These structures have been used to prepare infrared photodiodes. Details of the buffer layer growth, an explanation for the observed Fermi level effect and the growth and characterization of an infrared photodiode are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kurtz, S. R., Dawson, L. R., Biefeld, R. M., Fritz, I. J., and Zipperian, T. E., IEEE Elec. Dev. Letters 10 (1990) 150.CrossRefGoogle Scholar
2. Biefeld, R. M., Cunningham, B. T., Kurtz, S. R., and Wendt, J. R., Mat. Res. Soc. Symp. Proc. 216 (1991) 175.CrossRefGoogle Scholar
3. Kurtz, S. R., Biefeld, R. M., and Zipperian, T. E., Semicond. Sci. Technol., 5 (1990) S24.CrossRefGoogle Scholar
4. Walukiewicz, W., J. Vac. Sci. Technol. B 6, 1257 (1988), and Phys. Rev. B 39, 8776, (1989).Google Scholar
5. Yonenaga, I. and Sumino, K., J. Appl. Phys. 65, pp. 85 (1989).CrossRefGoogle Scholar
6. Fox, B. A. and Jesser, W. A., J. Appl. Phys. 68, pp. 2739 (1990).Google Scholar
7. Lee, J. -L., Wei, L., Tanigawa, S. and Kawabe, M., Appl. Phys. Lett. 58, 1524 (1991).Google Scholar
8. Oszwaldowski, M. and Zimpel, M., J. Phys. Chem. Solids, 49, (1988) 1179.Google Scholar
9. Biefeld, R. M., Hills, C. R. and Lee, S. R., J. Crystal Growth 91 (1988) 515.Google Scholar
10. Cunningham, B. T., Schneider, R. P. Jr, and Biefeld, R. M., Mat. Res. Soc. Symp. Proc. 216 (1991)233.Google Scholar
11. Biefeld, R. M., Proc. Symp. Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and its Consequences, 89–5, (Electrochemical Society, 1989), 207.Google Scholar
12. Biefeld, R. M., Kurtz, S. R., and Fritz, I. J., J. Electron. Mat., 18 (1989) 775.Google Scholar
13. Yonenaga, I. and Sumino, K., J. Appl. Phys. 65 (1989) 85.Google Scholar
14. Fox, B. A. and Jesser, W. A., J. Appl. Phys. 68 (1990) 2739.CrossRefGoogle Scholar