No CrossRef data available.
Article contents
Femtosecond Laser Melting of Graphite and Diamond
Published online by Cambridge University Press: 25 February 2011
Abstract
Femtosecond time-resolved reflectivity measurements performed on highly oriented pyrolytic graphite (HOPG) and diamond elucidate the nature of the phase transition from solid to liquid carbon. In HOPG, we find that a high-reflectivity phase lasting as long as 10 ps appears when the surface is irradiated with pulse fluences in excess of 0.13 J/cm2, the critical fluence for melting. This transforms within 30 ps into an equilibrium low-reflectivity phase lasting hundreds of ps, similar to behavior observed in picosecond reflectivity experiments. The results suggest the occurrence of a two-step phase transition (graphite -> liquid metal -> liquid insulator) when HOPG is excited above the critical fluence. Similar results are obtained with diamond.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990