Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T08:13:52.542Z Has data issue: false hasContentIssue false

Fast Dynamics in Glass Forming Systems: Vibrations vs Relaxation

Published online by Cambridge University Press:  10 February 2011

A. P. Sokolov*
Affiliation:
Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55021 Mainz, Germany, on leave from Institute of Automation & Electrometry Russ. Ac. Sci., 630090, Novosibirsk, Russia
Get access

Abstract

Two contributions specific for the spectra of the fast dynamics in glass forming systems, a broad quasielastic scattering and the boson peak, are analyzed. It is shown that the vibrational contribution (the boson peak) decreases strongly in fragile systems. Some speculations about dependence of the degree of fragility (a la Angeli) on peculiarity of the spectrum of fast dynamics are presented. The existence of some intrinsic relation between the broad quasielastic contribution and the boson peak is demonstrated from analysis of the recent neutron and Raman scattering data. It is shown that this relation can be explained in framework of the model of damped oscillator. The model ascribes the quasielastic contribution to the scattering of light or neutrons on the vibrations around the boson peak, which are damped by some relaxation channel and have a quasielastic part in their response function. It is demonstrated that the model can explain many peculiar properties of the fast dynamics in the Raman, neutron and far-infrared absorption spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amorphous Solids: Low-Temperature Properties, Ed. Phillips, W.A., Springer-Verlag, Berlin, 1981.Google Scholar
2. Buchenau, U., Zorm, R., Europhys. Lett. 18, 523(1992).Google Scholar
3. Sokolov, A.P., Rössler, E., Kisliuk, A., Quitmann, D. Phys. Rev. Lett. 71, 2062(1993).Google Scholar
4. Novikov, V.N., Rössler, E., Malinovsky, V.K., Surovtsev, N.V., Europhys. Lett. 35, 289(1996).Google Scholar
5. Angell, C.A. in Relaxation in Complex Systems. eds. Ngai, K-L. and Wright, G.B., Office Naval Res., Washington 1984, p. 3.Google Scholar
6. Sokolov, A.P., Calemczuk, R., Salce, B., et al. Phys. Rev. Lett. (submitted).Google Scholar
7. Stephens, R.B., Phys. Rev. B 8, 2896(1973) and Phys. Rev. B 13, 852(1976).Google Scholar
8. Elliott, S.R., Europhys. Lett. 19, 201(1992).Google Scholar
9. Schirmacher, W., Wagener, M., Sol. St. Comm. 86, 597(1993).Google Scholar
10. Foret, M., Courtens, E., Vacher, R., Suck, J.-B., Phys. Rev. Lett. 77, 3831(1996).Google Scholar
11. Polatsek, G., et al. Phys. Rev. B 39, 9353(1989).Google Scholar
12. Ahmad, N., Hutt, K.W., Phillips, W.A., J. Phys. C: Sol. State 19, 3765(1986).Google Scholar
13. Isakov, S.L., et al., Sol. St. Comm. 86, 123(1993).Google Scholar
14. Arai, T., Kataura, H., Yasouka, H., Onari, S., J. Non-Cryst. Sol. 77&78, 1149(1985).Google Scholar
15. Winterling, G., Phys. Rev. B 12, 2432(1975).Google Scholar
16. Boon, J.P. and Yip, S., Molecular Hydrodynamics (McGraW-Hill, New York, 1980).Google Scholar
17. Schroeder, J., et al., J. Non-Cryst. Sol. 161, 173(1993).Google Scholar
18. Buchenau, U., et al., Phys. Rev. Lett. 60, 1318(1988).Google Scholar
19. Buchenau, U., Wischnewski, A., Richter, D., Frick, B. Phys. Rev. Lett. 77, 4035(1996).Google Scholar
20. Shuker, R., Gammon, R.W., Phys. Rev. Lett. 25, 222(1970).Google Scholar
21. Sokolov, A.P., et al. Phys. Rev. B 52, R9815(1995).Google Scholar
22. Gochiyaev, V.Z., et al., Phil. Mag. B 63, 777(1991).Google Scholar
23. Sokolov, A.P. Phys. B 219&220, 251(1996).Google Scholar
24. Kojima, S., Novikov, V.N. Phys. Rev. B 54, 222(1996).Google Scholar
25. Ngai, K.X., et al. in Non-equlibrium phenomena in supercooled fluids, glasses and amorphous materials, ed. Giordano, M., Leporini, D., Tosi, M.P., World Scientific, Singapore, 1996, pp. 321.Google Scholar
26. Lunkenheimer, P., et al. Phys. Rev. Lett. 77, 318(1996).Google Scholar
27. Götze, W., Sjögren, L. Rep. Progr. Phys. 55, 241(1992).Google Scholar
28. Zhu, T.C., et al. Phys. Rev. B 44, 4281(1991) andGoogle Scholar
Morath, C.J., et al. Phys. B 219&220, (1996).Google Scholar
29. Masciovecchio, C., et al. Phys. Rev. Lett. 76, 3356(1996) andGoogle Scholar
Benassi, P., et al., Phys. Rev. Lett., 77, 3835(1996).Google Scholar
30. Pimenov, A., et al. Phys. Rev. E 54, 676(1996).Google Scholar
31. Strom, U., et al. Sol. St. Comm. 15, 1871(1974).Google Scholar
32. Sokolov, A.P., Novikov, V.N., Strube, B. (to be submitted).Google Scholar
33. Sokolov, A.P., Novikov, V.N., B. Strube Europhys. Lett. (submitted).Google Scholar