Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T05:25:38.076Z Has data issue: false hasContentIssue false

A Facile, “Green” One – Step, Room Temperature Synthesis of a Series of monodispersed MSe(M = Cd or Zn) Water Dispersible Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Oluwatobi S. Oluwafemi
Affiliation:
[email protected], University of Zululand, Department of Chemistry, Kwadlangezwa, 3886, South Africa
Neerish Revaprasadu
Affiliation:
[email protected], University of Zululand, Department of Chemistry, Kwadlangezwa 3886, South Africa
Get access

Abstract

We herein report a facile, ‘green’ one- step synthesis of a series of monodispersed water-soluble selenide nanoparticles at room temperature. The capping ligands used include, cysteine, methionine, ascorbic acid and starch which function as agents of solubilisation, stabilization and conjugation sites for biomolecules. The synthetic approach involves the addition of an appropriate volume of selenide ion produced via the reduction of selenium powder in water to an aqueous solution containing the ligand- metal salt (MCl2 M = Zn or Cd). Optical spectroscopy shows that the particles are of high quality while the transmission electron microscopy (TEM) of the samples shows variation in shapes ranging from dots to rods of high and low aspect ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Malik, M. A. and O'Brien, P., phosphorus, sulphur and silicon, 180, 689 (2005).Google Scholar
2) Malik, M. A., O'Brien, P. and Revaprasadu, N., South African Journal Of Science, 96, 55 (2000).Google Scholar
3) Green, M. and O'Brien, P., Chem. Commun., 2235 (1999).Google Scholar
4) Chan, W. C. W. and Nie, S. M., Science, 281, 2016 (1998).Google Scholar
5) Bruchez, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A. P., Science, 81, 2013 (1998).Google Scholar
6) Murphy, C. J., Anal. Chem., 74, 520A (2002).Google Scholar
7) Costa-Fernandez, J. M., Pereiro, R. and Sanz-Medel, A., Trends In Anal. Chem., 25, 207 (2006).Google Scholar
8) Chan, W. C. W., Prendergast, T. L., Jain, M., and Nie, S., Spie. Proc., 2, 3924 (2000).Google Scholar
9) Schneider, J. A., Katz, B., and Melles, R. B., Pediatr. Nephrol., 4, 645 (1990).Google Scholar
10) Mattoussi, H., J. Am. Chem. Soc., 122, 12142 (2000).Google Scholar
11) Pathak, S., J. Am. Chem. Soc., 123, 4103 (2001).Google Scholar
12) Rogach, A. L., Kornowski, A., Gao, M., Eychmuller, A. and Weller, H., J. Phys. Chem., 103, 3065 (1999).Google Scholar
13) Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, L. G., Diesner, K., Chemseddine, A., Eychumuller, A. and Weller, H., J. Phys. Chem., 98, 7665 (1994).Google Scholar
14) Rogach, A. L., Katsikas, L., Kornowski, A., Su, D. S., Eychmuller, A. and Weller, H., Ber.Bunsenges. Phys. Chem., 100, 1772 (1996).Google Scholar
15) Rogach, A. L., Katsikas, L., Kornowski, A., Su, D. S., Eychmuller, A. and Weller, H., Ber.Bunsenges. Phys. Chem., 101, 1668 (1997).Google Scholar
16) Gao, M., Kirstein, S., Mohwald, H., Rogach, A. L., Kornowski, A., Eychmuller, A. and Weller, H., J. Phys. Chem. B, 102, 8360 (1998).Google Scholar
17) Li, J. H., Ren, C. L., Liu, X. Y., Hu, Z. D. and Xue, D. S., Mater. Sci. Eng. B, 458, 319 (2007).Google Scholar
18) Ma, X. D., Qian, X. F., Yin, J., Xi, H. A. and Zhu, Z. K., J. Colloid And Interface Science, 252, 7 (2002).Google Scholar
19) Ma, X. D., Qian, X. F., Yin, J. and Zhu, Z. K., J. Mater. Chem., 12, 663 (2002).Google Scholar
20) Badr, Y. and Mahmoud, M. A., Physica B, 369, 278 (2005).Google Scholar
21) Yang, Y. J. and Xiang, B. J., J. Cryst. Growth, 284, 453 (2005).Google Scholar
22) Bowen Katari, J. E., Colvin, V. L., Alivisatos, A. P., J. Phys. Chem., 98, 4109 (1994).Google Scholar
23) Bawendi, M. G., Steigerwald, M. L. and Brus, L. E., Annu. Rev. Phys. Chem., 41, 477 (1990).Google Scholar
24) Oluwafemi, O. S. and Revaprasadu, N., Mater. Res. Soc. Symp. Proc., 951, E03 (2007).Google Scholar
25) Oluwafemi, S. O., Revaprasadu, N. and Ramirez, A. J., J. Cryst. Growth, 310, 3230 (2008).Google Scholar
26) Yu, W. W., Qu, L., Guo, W. and Peng, X., Chem. Mater., 15, 2854 (2003).Google Scholar
27) Green, M., Harwood, H., Barrowman, C., Rahman, P., Eggeman, A., Festry, F., Dobson, P. and Ng, T., J. Mater. Chem., 17, 1989 (2007).Google Scholar