Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:39:35.486Z Has data issue: false hasContentIssue false

Fabrication of YBa2Cu37/Ag Sputtered Multilayers

Published online by Cambridge University Press:  26 February 2011

J. Colino
Affiliation:
Instituto de Ciencia de Materiales (CSIC), Serrano 144, 28006 Madrid.
J. L. Vicent
Affiliation:
Dpto. Física de Materiales, Facultad Físicas, Universidad Complutense, 28040 Madrid, and I.C.M. (CSIC) Serrano 144, 28006 Madrid (SPAIN).
Get access

Abstract

Thin films of YBa2Cu3O7/Ag multilayered structures have been grown by dc magnetron sputtering on MgO(lOO) substrates. The samples have been characterized by X-ray diffraction, scanning tunneling microscopy and resistivity measurements. Multilayers with YBCO layer thickness above 40nm show superconducting transitions and zero resistances higher than 70K. These layers show c-axis growth perpendicular to the substrate and the silver layers have preferential (111) orientation normal to the substrate too. Finally STM images reveal screw dislocation spirals at the YBCO layer surface even when the superconducting layer is grown on silver (111) underlayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deutscher, G.. Phys. C 185–189, 261 (1991).Google Scholar
2. Vadlamannati, S., Li, Q., Xi, X.X., Venkatesan, T., MacLean, W. L., Lindenfeld, P.. Phys. C 185–189 2051 (1991).Google Scholar
3. Cohen, D., Polturak, E., Phys. Rev. B 41, 11619 (1990).Google Scholar
4. Jia, Q. X., Anderson, W. A.. J. Appl. Phys. 66, 452 (1989).Google Scholar
5. Gurvitch, M. and Fiory, A. T.. Appl. Phys. Lett. 51, 1027 (1987).Google Scholar
6. Nakamura, O., Chan, I. N., Guimpel, J., Schuller., I. K. Appl. Phys. Lett. 59, 1245 (1991).Google Scholar
7. Witanachchi, S., Patel, S., Shaw, D. T., Kwok, H. S.. Appl. Phys. Lett. 55, 295 (1989).Google Scholar
8. Moreland, J., Ono, R. H., Beali, J. A., Madden, M.. Appl. Phys. Lett. 54, 1477 (1989).Google Scholar
9. Murduck, J. M., Capone, D. W., Schuller, I. K., Foner, S., Ketterson, J. L.. Appl. Phys. Lett. 52, 504 (1988).Google Scholar
10. Colino, J., Sacedón, J. L., Vicent, J. L.. Appl. Phys. Lett. 59, 3327 (1991).Google Scholar
11. Nakamura, O., Fullerton, E. F., Guimpel, J., Schuller, I. K.. Appl. Phys. Lett. 60, 120 (1992).Google Scholar
12. Khan, M. R., Schuller, I. K., Falco, C. M.. Phys. Stat. Sol. 22, 23 (1982).Google Scholar
13. Gerber, C., Anselmetti, D., Bednorz, J. G., Mannhart, J., Schlom, D. G.. Nature 350, 279 (1991).Google Scholar
14. Moreland, J., Rice, P., Russeck, S. E., Jeanneret, B., Roshko, A., Ono, R. H., Rudman, D.. Appl. Phys. Lett. 59, 3039 (1991).Google Scholar