Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T19:47:09.487Z Has data issue: false hasContentIssue false

Fabrication of transparent polymer-inorganic hybrid material

Published online by Cambridge University Press:  15 February 2011

S. Li
Affiliation:
Materials Science and Engineering, The Royal Institute of Technology, 10044 Stockholm, Sweden, [email protected]
M. S. Toprak
Affiliation:
Materials Science and Engineering, The Royal Institute of Technology, 10044 Stockholm, Sweden, [email protected]
Y. S Jo
Affiliation:
Laboratoire de Médecine Régénérative et de Pharmacobiologie, Integrative Biosciences Institute, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
D. K. Kim
Affiliation:
Institute for Science & Technology in Medicine, Keele University, ST4 7QB, United Kingdom
M. Muhammed
Affiliation:
Materials Science and Engineering, The Royal Institute of Technology, 10044 Stockholm, Sweden, [email protected]
Get access

Abstract

Polymer-inorganic hybrid materials composed of polymethyl methacrylate (PMMA) and zinc compounds were prepared by sol-gel in-situ transition polymerization of zinc complex in PMMA matrix. Zinc acetate dihydrate dissolved in ethanol was used as the inorganic precursor. Monoethanolamine (MEA) acted as a complexing agent to control the hydrolysis of zinc acetate to produce a zinc compound network, and then PMMA, formed in-situ through a radical polymerization, were chemically bonded to the forming zinc compound network to realize a hybrid material. Transparent homogenous hybrid materials with slight colours from pink to yellow were fabricated by varying the composition. TEM, FT-IR were employed to investigate structural and physical properties. The UV-shielding effect was evaluated by UV-VIS. The low content of zinc (around 0.02 wt%) and the fine particle size rendered it visibly transparent and capable of greatly attenuating UV radiation in the full UV range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ahmad, Z., Sarwar, M. I., Mark, J. E., J. Mat. Chem. 7, 259 (1997).Google Scholar
2 Schmidt, H., Schloze, H., Tunker, G. J., Non-Cryst. Solids. 80, 557 (1986).Google Scholar
3 Chen, Y., Jin, L., Xie, Y., J. Sol-Gel Sci. Tech. 13, 735 (1998).Google Scholar
4 Nandi, M., Conklin, J. A., Salvati, L., Sen, A., Chem. Mater. 3, 2021 (1991).Google Scholar
5 Glaster, R. H., Wilkes, G. L., Polym. Bull. 22, 527 (1989).Google Scholar
6 Hsiue, G. H., Kuo, W. J., Huang, Y. P., Jeng, R. J., Polymer 41, 2813 (2002).Google Scholar
7 Novak, B. M., Adv. Mater. 5, 422 (1993).Google Scholar
8 Mitchnick, M. A., Gwozdz, G. T., Micale, F. J., US patent 5 733 531 (1998).Google Scholar
9 Lijima, T., JP 2002087817 (2002).Google Scholar
10 Imaizumi, Y., Kosaki, S., Tauchi, K., JP 11131048 (1999).Google Scholar
11 Dekker, M., in Polymers for Lightwave and Integrated Optics, edited by Hornak, H.A. (New York, 1992)Google Scholar
12 Xiong, M., Gu, G., You, B., Wu, L., J. Appl. Polymer Sci. 90, 1923 (2003).Google Scholar
13 Shim, J. W., Kim, J. W., Han, S. H., Chang, I. S., Kim, H. K., Kang, H. H., Lee, O. S., Suh, K. D., Colloids Surf., A 207, 105 (2002).Google Scholar
14 Zhou, X. D., Gu, H. C., J. Mater. Sci. Lett. 21, 577 (2002).Google Scholar
15 Li, H., Chen, Y., Ruan, C., Gao, W., Xie, Y., Journal of Nanoparticle Research 3, 157 (2001).Google Scholar
16 Znaidi, L., Soler Illia, G. J. A. A., Benyahia, S., Sanchez, C., Kanaev, A. V., Thin Solid Films 428, 257 (2003).Google Scholar