Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T10:12:28.263Z Has data issue: false hasContentIssue false

Fabrication of Transparent Ferroelectric-Gate Thin Film Transistors with Nonvolatile Memory Operation

Published online by Cambridge University Press:  26 February 2011

Eisuke Tokumitsu
Affiliation:
[email protected], Tokyo Institute of Technology, 4259-R2-19, Nagatsuta, Midori-ku, Yokohama, N/A, 2268503, Japan
Masaru Senoo
Affiliation:
Eisuke Tokumitsu, Takaaki Miyasako and Masaru Senoo Precision and Intelligence Laboratory, Tokyo Institute of Technology, R2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Etsu Shin
Affiliation:
Eisuke Tokumitsu, Takaaki Miyasako and Masaru Senoo Precision and Intelligence Laboratory, Tokyo Institute of Technology, R2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Get access

Abstract

We demonstrate transparent thin film transistors (TFTs) with nonvolatile memory operation using Bi4-xLaxTi3O12 (BLT) as a gate insulator and indium tin oxide (ITO) as a channel. ITO is also used for the gate, source and drain electrodes. Drain current-drain voltage (ID-VD) characteristics of transparent ITO/BLT ferroelectric-gate TFTs exhibit excellent n-channel transistor operations. On current of 0.35 mA was obtained when the applied gate voltage is 6V. On the other hand, the off current of the device is as low as 10-10A, which indicates that the ITO channel is sufficiently depleted by the ferroelectric polarization. In addition, drain current-gate voltage (ID-VG) characteristics demonstrate clear counterclockwise hysteresis loop due to the ferroelectric gate insulator. Optical transmittance of the fabricated device is greater than 60% including the quartz substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakajima, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M. and Hosono, H., Nature, 432, 488 (2004)Google Scholar
2 Carcia, P. F., McLean, R. S., Reilly, M. H. and Nunes, G. Jr., Appl. Phys. Lett., 82, 1117 (2004)Google Scholar
3 Nishii, J., Hossain, F. M., Takagi, S., Aita, T., Saikusa, K., Ohmaki, Y., Ohkubo, I., Kishimoto, S., Ohtomo, A., Fukumura, T., Matsukura, F., Ohno, Y., Koinuma, H., Ohno, H. and Kawasaki, M., Jpn. J. Appl. Phys., 42, L347 (2003).Google Scholar
4 Fortunato, E. M. C., Barquinha, P. M. C., Pimentel, A. C. M. B. G.., Gonçalves, A. M. F., Marques, A. J. S., Martins, R. F. P. and Pereira, L. M. N., Appl. Phys. Lett., 85, 2541 (2004).Google Scholar
5 Kwon, Y., Li, Y., Heo, Y. W., Jones, M., Holloway, P. H., Norton, D. P., Park, Z. V. and Li, S., Appl. Phys. Lett., 84, 2685 (2004).Google Scholar
6 Prins, M. W. J., Grosse-Holz, K. O., Muller, G., Cillessen, J. F. M., Giesbers, J. B., Weening, R. P. and Wolf, R. M., Appl. Phys. Lett., 68, 3650 (1996).Google Scholar
7 Prins, M. W. J., Zinnemers, S. E., Cillessen, J. F. M., and Giesbers, J. B., Appl. Phys. Lett., 70, 458 (1997).Google Scholar
8 Tokumitsu, E., Senoo, M. and Miyasako, T., Journal of Microelectronic Engineering, 80, 305 (2005).Google Scholar
9 Miyasako, T., Senoo, M., and Tokumitsu, E., Appl. Phys. Lett., 86, 162902 (2005).Google Scholar