Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:04:14.631Z Has data issue: false hasContentIssue false

Fabrication of Quantum Wires by Wet Etching Techniques

Published online by Cambridge University Press:  22 February 2011

H. W. Yang
Affiliation:
Department Of Electrical Engineering, National Tsing Hua University Hsin-Chu, Taiwan 30043, R.O.C.
S. F. Horng
Affiliation:
Department Of Electrical Engineering, National Tsing Hua University Hsin-Chu, Taiwan 30043, R.O.C.
H. L. Hwang
Affiliation:
Department Of Electrical Engineering, National Tsing Hua University Hsin-Chu, Taiwan 30043, R.O.C.
Get access

Abstract

Quantum Wires Structures Were Fabricated By Patterning Quantum Well Samples With Electron Beam Lithography And Various Wet Chemical Etching Procedures. Wire Structures With 800Å Wire Width Were Achieved By Wet Etching In Nh4Oh / H2O2 / H2O (20:7:973). These Samples Were Characterized By Scanning Electron Microscopy (Sem), Photoluminescence (Pl), And Polarization-Dependent Photoluminescence Excitation (Ple) Measurements. The Pl Spectra Show Significantly Strongpr Peaks Than That Taken From An En-Etched Quantum Well Sample. A Wire Width Of 400Å Was Estimated From The Blue Shift Of Pl Peaks. A 22% Anisotropy Was Observed From Polarization-Dependent Ple Spectra, Further Corroborating The Existence Of Two-Dimensional Quantum Confinement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brum, J. A., Phys. Rev., B43, 12082 (1991).CrossRefGoogle Scholar
2. Sakaki, H., Jpn. J. Appl. Phys., 19, L735 (1980)CrossRefGoogle Scholar
3. Petroff, P. M., Gossard, A. C., Logan, R. A., and Wiegmann, W., Appl. Phys. Lett., 41, 635 (1982).CrossRefGoogle Scholar
4. Fukui, T. and Saito, H., Appl. Phys. Lett., 50, 824 (1987).CrossRefGoogle Scholar
5. Arnot, H. E. G., Watt, M., Sotomayor-Torres, C. M., Glew, P., Cusco, R., Bates, J., and Beaumont, S. P., Superlatt. Microstruct., 5, 459 (1989).CrossRefGoogle Scholar
6. Stern, M. B., Craighead, H. G., Liao, P. F., and , Mankiewich, Appl. Phys. Lett., 45, 410 (1984).CrossRefGoogle Scholar
7. Bean, J. C., Becher, G. E., Petroff, P. M., and Seider, T. E., J. Appl. Phys. 48, 907 (1977).CrossRefGoogle Scholar
8. Arakawa, Y., Vahala, K., Yariv, A., and Lau, K., Appl. Phys. Lett., 48, 384 (1986).CrossRefGoogle Scholar
9. Kohl, M., Heitmann, D., Grambow, P., and Ploog, K., Phys. Rev. Lett., 63, 2124 (1989).CrossRefGoogle Scholar
10. Arakawa, Y., Vahala, K., Yariv, A., and Lau, K., Appl. Phys. Lett., 47, 1142 (1985).CrossRefGoogle Scholar
11. Gershoni, D., Temkin, H., Dolan, G. J., Chu, S. N. G., and Panish, M. B., Appl. Phys. Lett., 53, 995 (1988).CrossRefGoogle Scholar
12. Li, G. P., Guo, L., Katoh, T., Nagamune, Y., Fukatsu, S., Shiraki, Y., and Ito, R., Jpn. J. Appl. Phys. 29, L1213 (1990)CrossRefGoogle Scholar
13. Pang, S. W., Goodhue, W. D., Lyszczarz, T. M., Ehrlich, D. J., Goodman, R. B., and Johnson, G. D., J. Vac. Sci. Technol., B 6, 1916 (1988).CrossRefGoogle Scholar
14. Katoh, T., Nagamune, Y., Li, G. P., Fukatsu, S., Shiraki, Y., and Ito, R., Appl. Phys. Lett, 57, 1212, (1990)CrossRefGoogle Scholar
15. see, for example, Bastard, G., Wave Mechanics Applied To Semiconductor Heterostructures, Halsted Press, New York, 1988.Google Scholar
16. Mirih, R. P., Tan, I., Weman, H., Leonard, M., Yasuda, T., Bowers, J. E., and Hu, E. L., J. Vac. Sci. Technol. A 10(4), 697, 1992.Google Scholar