Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T05:51:16.396Z Has data issue: false hasContentIssue false

Fabrication of Planar Diamond Electron Emitters for Flat Panel Displays

Published online by Cambridge University Press:  10 February 2011

H. Kawamura
Affiliation:
Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
S. Kato
Affiliation:
Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
T. Maki
Affiliation:
Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
T. Kobayashi
Affiliation:
Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

A planar electron emitter was fabricated employing chemical vapor deposited (CVD) diamond thin films. This device is composed of CVD diamond films selectively deposited on a pair of patterned Au/Cr films separated 2 micrometers from each other. When the driving voltage (Vd) was applied between the Au/Cr films, the extremely low threshold emission from diamond film was observed (Vd ∼ 10 V). Furthermore, by applying high voltage on anode screen placed above this device, part of emitted current was drawn to the anode and the luminescence from phosphors was clearly seen under Vd = 50V. The mechanism of electron emission from the diamond films used in this device was also discussed by comparing with the electron emission from isolated diamond particles. It was found that the effective work functions differ between the isolated particles and the continuous films. This result suggests a difference in the emission site of electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Himpsel, F. J., Knapp, J. A., Vechten, J. A. Van and Eastman, D. E.: Phys. Rev. B 20 (1979) 625.Google Scholar
2) Geis, M. W., Gregory, J. A. and Pate, B. B.: IEEE Trans. Electron Devices 38 (1991) 619.Google Scholar
3) Okano, K., Yamada, T., Ishihara, H, Koizumi, S. and Itoh, J.: Appl. Phys. Lett. 70 (1997) 2201.Google Scholar
4) Geis, M. W., Twichell, J. C., Efremow, N. N., Krohn, K. and Lyszczarz, T. M.: Appl. Phys. Lett. 68 (1996) 2294.Google Scholar
5) Bandis, C. and Pate, B. B.: Appl. Phys. Lett. 69 (1996) 366.Google Scholar
6) Huang, Z. H., Culter, P. H., Miskovsky, N. M. and Sullivan, T. E.: Appl. Phys. Lett. 65 (1994) 2562.Google Scholar
7) Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L.: J. Vac. Sci. Technol. B 14 (1996) 2011.Google Scholar
8) Nomura, I., Sakai, K., Yamaguchi, E., Yamanobe, M., Ikeda, S., Hara, T., Hatanaka, K., Osada, Y., Yamamoto, H. and Nakagiri, T.: IDW'96 Tech. Dig. (1996) 523.Google Scholar
9) Kawamura, H., Maki, T. and Kobayashi, T.: Jpn. J. Appl. Phys. 38 (1999) in published.Google Scholar
10) Ziel, A. van der: Solid State Physical Electronics (Prentice-Hall, Englewood Cliffs, 1966).Google Scholar
11) Geis, M. W., Twichell, J. C. and Lyszczarz, T. M.: J. Vac. Sci. Technol. B 14 (1996) 2060.Google Scholar
12) Landstrass, M. I. and Lavi, K. V.: Appl. Phys. Lett. 55 (1989) 975.Google Scholar
13) Maki, T., Shikama, S., Komori, M., Sakaguchi, Y., Sakuta, K. and Kobayashi, T.: Jpn. J. Appl. Phys. 31 (1992) 1446.Google Scholar
14) Baumann, P. K. and Nemanich, R. J.: J. Appl. Phys. 83 (1998) 2072.Google Scholar
15) Malta, D. P., Posthill, J. B., Humphreys, T. P., Thomas, R. E., Fountain, G. G., Rudder, R. A., Hudson, G. C., Mantini, M. J. and Markunas, R. J.: Appl. Phys. Lett. 64 (1994) 1929.Google Scholar