Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:41:17.808Z Has data issue: false hasContentIssue false

Fabrication of Piezoelectric ZnO and PZT Films for FPW Device

Published online by Cambridge University Press:  26 February 2011

Sang Hoon Yoon
Affiliation:
[email protected], Auburn University, Materials Engineering, 201 Ross Hall, Auburn, AL, 36849, United States, 1-334-329-8700, 1-334-844-3400
Dong-Joo Kim
Affiliation:
[email protected], Auburn University, Materials Research and Education center, 201 Ross Hall, Auburn, AL, 36849, United States
Get access

Abstract

Piezoelectric ZnO and PZT films for acoustic wave device have been investigated. The films used for acoustic wave devices require textured structure, high piezoelectric coefficients, and high electromechanical coupling coefficients, because the piezoelectric films launch and receive the acoustic wave. We fabricated ZnO films by RF magnetron sputtering, and PZT films by chemical solution deposition (CSD). Results showed that uniform, dense and highly textured films were obtained under optimal process parameters. The film texture was controlled by modifying process parameters, such as gas kinds, gas ratio, and substrate type for sputtered ZnO films, and the presence of chelating agent, temperature of heat treatment, and substrate type for solution derived PZT films. Flexural plate wave (FPW) device has been successfully integrated onto 4-inch silicon wafers with optimized piezoelectric films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pyun, J. C., Beutel, H., Meyer, J.-U., Ruf, H. H., Biosens. Bioelectron. 13 (1998) 839845.Google Scholar
[2] Hickernell, F. S., IEEE Trans. Sonics Ultrasonics 32 (1985) 621629.Google Scholar
[3] Lee, Y. S., Yoon, D. S., Kim, T. S., Integr. Ferroelectr. 69 (2005) 391400.Google Scholar
[4] Krunks, M., Mellikov, E., Thin Solid Films 270 (1995) 3336.Google Scholar
[5] Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., Shen, H., J. Appl. Phys. 85 (1999) 25952602.Google Scholar
[6] Choi, J. H., Tabata, H., Kawai, T., J. Crystal Growth 226 (2001) 493500.Google Scholar
[7] Bao, D., Gu, H., Kuang, A., Thin Solid Films 312 (1998) 3739.Google Scholar
[8] Aita, C. R., Lad, R. J., Tisone, T. C., J. of Appl. Phys. 51 (1980) 64056410.Google Scholar
[9] Jou, J. H., Han, M. Y., Cheng, D. J., J. Appl. Phys. 71 (1992) 43334336.Google Scholar
[10] Kim, H. W., Kim, N. H., Mater. Sci. Semicond. Process. 7 (2004) 16.Google Scholar
[11] Water, W., Chu, S. Y., Mater. Lett. 55 (2002) 6772.Google Scholar
[12] Ondo-Ndong, R., Ferblantier, R., Kalfioui, M. A., Boyer, A., Foucaran, A., J. Crystal Growth 255 (2003) 130135.Google Scholar
[13] Shrout, T. R., Zhang, S. J., Eitel, R., Stringer, C., Randall, C. A., IEEE International Ultrasonics, Ferroelectrics, and Frequency Control (2004) 126129.Google Scholar
[14] Malic, B., Kosec, M., Smolej, K., Stavber, S., J. Eur. Ceram. Soc. 19 (1999) 13451348.Google Scholar
[15] Hwang, K. S., Manabe, T., Nagahama, T., Yamaguchi, I., Kumagai, T., Mizuta, S., Thin Solid Films 347 (1999) 106111.Google Scholar
[16] Law, C. W., Tong, K. Y., Li, J. H., Li, K., Thin Solid Films (1998) 220224.Google Scholar
[17] Weng, L., Bao, X., Sagoe-Crentsil, K., Mater. Sci. Eng. B 96 (2002) 307312.Google Scholar
[18] Yoshino, Y., Inoue, K., Takeuchi, M., Ohwada, K., Vacuum 51 (1998) 601607.Google Scholar
[19] Aita, C. R., Purdes, A. J., Lad, R. J., Funkenbusch, P. D., J. Appl. Phys. 51 (1980) 55335536.Google Scholar
[20] Krupanidhi, S. B., Sayer, M., J. Appl. Phys. 56 (1984) 33083318.Google Scholar
[21] Crisler, D. F., Cupal, L. J., Moore, A. R., Proc. of IEEE 56 (1968) 225226.Google Scholar
[22] Schowalter, L. J., Fathauer, R. W., Goehner, R. P., Turner, L. G., DeBlois, R. W., Hashimoto, S., Peng, J. L., Gibson, W. M., Krusius, J. P., J. Appl. Phys. 58 (1985) 302308.Google Scholar
[23] Norga, G. J., Vasiliu, F., Fe, L., Wouters, D. J., Biest, O. V. d., J. Mater. Res. 18 (2003) 12321238.Google Scholar
[24] Schwartz, R. W., Voigt, J. A., Boyle, T. J., Christenson, T. A., Buchheit, C. D., Ceram. Eng. Sci. Proc. 16 (1995) 10451056.Google Scholar