Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:40:36.168Z Has data issue: false hasContentIssue false

Fabrication of Organic Thin Film Transistor Arrays on Plastic and Paper Substrate for Flexible Display Application

Published online by Cambridge University Press:  18 March 2014

Y. Fujisaki
Affiliation:
NHK Science and Technology Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan.
Y. Nakajima
Affiliation:
NHK Science and Technology Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan.
M. Nakata
Affiliation:
NHK Science and Technology Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan.
H. Tsuji
Affiliation:
NHK Science and Technology Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan.
T. Yamamoto
Affiliation:
NHK Science and Technology Research Laboratories, Kinuta, Setagaya-ku, Tokyo 157-8510, Japan.
Get access

Abstract

Organic thin-film transistors (OTFTs) are the most promising candidates for flexible electronics owing to their flexible structures, the simplicity of processing large-area devices, and excellent compatibility with flexible substrates. To date, many studies have been reported that have aimed at developing a wide range of plastic electronics such as flexible displays, sensors. In this paper, we discuss our recent work, focusing on OTFT arrays and their application to flexible display. An active-matrix (AM) backplane using a low-temperature cross-linkable olefin-type polymer as the gatedielectric and an air-stable DNTT as the organic semiconductor (OSC) was successfully fabricated on a plastic substrate. The short-channel TFT array exhibited a high hole mobility of over 0.5 cm2/Vs, a low subthreshold slope of 0.31, and excellent environmental and operational stability. A 5-inch flexible OLED display exhibited a high luminescence of over 300 cd/m2 by driving of the DNTT-based OTFTs. Solution-processed OTFTs are also attracting considerable attention owing to both their simple manufacturing process and excellent transistor performance. We present a simple patterning process for a solution-processable OSC that can be used to develop a high-mobility short-channel TFT array. The OSC film was directly patterned on the confined active channel region by a simple lamination coating technique and the resulting TFTs showed a high mobility of up to 1.3 cm2/Vs. In the final section, we report on eco-friendly paper-based organic TFT array. A transparent cellulose nanofibers paper was firstly applied to a flexible substrate for the TFT backplane. A solution-processed TFT on the transparent paper exhibited a high mobility exceeding 1 cm2/Vs, good air stability, and excellent mechanical stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dodabalapur, A., Bao, Z., Makhija, A., Laquindanum, J. G., Raji, R., Feng, Y., Katz, H. E., and Rogers, J., Appl. Phys. Lett. 73, 142 (1998).CrossRefGoogle Scholar
Soeda, J., Hirose, Y., Yamagishi, M., Nakao, A., Uemura, T., Nakayama, K., Uno, M., Nakazawa, Y., Takimiya, K., and Takeya, J., Adv. Mater. 23, 3309 (2011).CrossRefGoogle Scholar
Smith, J., Zhang, W., Sougrat, R., Zhao, K., Li, R., Cha, D., Amassian, A., Heeney, M., McCulloch, I., and Anthopoulos, T., Adv. Mater. 24, 2441 (2012).CrossRefGoogle Scholar
Veres, J., Ogier, S., Lloyd, G., and de Leeuw, D., Chem. Mater. 16, 4543 (2004).CrossRefGoogle Scholar
Li, J., Du, J., Xu, J., Chan, H. L. W., and Yan, F., Appl. Phys. Lett. 100, 033301 (2012).CrossRefGoogle Scholar
Fujisaki, Y., Kono, T., Nakajima, Y., Takei, T., Nishida, J., Yamamoto, T., and Yamashita, Y., Appl. Phys. Lett. 97, 133303 (2010).CrossRefGoogle Scholar
Fujisaki, Y., Nakajima, Y., Takei, T., Fukagawa, H., Yamamoto, T., and Fujikake, H., IEEE Trans. Electron Devices 59, 3442 (2012).CrossRefGoogle Scholar
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., and Hasegawa, T., Nature (London) 475, 364 (2011).CrossRefGoogle Scholar
Li, H., Tee, B. C., Cha, J. J., Cui, Y., Chung, J. W., Lee, S. Y., and Bao, Z., J. Am. Chem. Soc. 134, 2760 (2012).CrossRefGoogle Scholar
Fujisaki, Y., Ito, H., Nakajima, Y., Nakata, M., Tsuji, H., Yamamoto, T., Furue, H., Kurita, T. and Shimidzu, N., Appl. Phys. Lett. 102, 153305 (2013).CrossRefGoogle Scholar
Liu, Z., Becerril, H. A., Roberts, M. E., Nishi, Y., and Bao, Z., IEEE Trans. Electron Devices 56, 176 (2009).CrossRefGoogle Scholar
Ikawa, M., Yamada, T., Matsui, H., Minemawari, H., Tsutsumi, J., Horii, Y., Chikamatsu, M., Azumi, R., Kumai, R., and Hasegawa, T., Nat. Commun. 3, 1176 (2012).CrossRefGoogle Scholar
Nogi, M., Iwamoto, S., Nakagaito, A. N., Yano, H., Adv. Mater. 21, 1595 (2009).CrossRefGoogle Scholar
Fujisaki, Y., Kono, T., Nakajima, Y., Nakata, M., Tsuji, H., Yamamoto, T., Kurita, T., Nogi, M. and Shimidzu, N., Adv. Func. Mater. (2013) DOI: 10.1002/adfm.201303024.Google Scholar