Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:45:36.639Z Has data issue: false hasContentIssue false

Fabrication of Microfluidic Devices for Droplet Generation based on Dry Film Resist

Published online by Cambridge University Press:  31 January 2011

Patrick William Leech
Affiliation:
[email protected], CSIRO, Gate 5 Normanby Rd, Clayton, 3169, Clayton, Victoria, 3169, Australia
Nan Wu
Affiliation:
[email protected], CSIRO, Materials Science and Engineering, Highett, Victoria, Australia
Yonggang Zhu
Affiliation:
[email protected], CSIRO, Materials Science and Engineering, Highett, Victoria, Australia
Get access

Abstract

Dry film resist has been used in the fabrication of Masters in microfluidic devices for droplet generation. The minimum feature size in the resist was controlled by the type of mask (transparency or electron beam Cr mask), the resolution of the pattern in transparency masks (2400 or 5080 dpi) and thickness of resist in the range from 35 to 140 μm. The Master patterns formed in dry resist were replicated as a Ni shim and then hot embossed into Plexiglas 99524. These devices were used to generate water-in-oil droplets with a well defined dependence of diameter and frequency on flow parameters. The application of dry laminar resist and transparency masks has allowed the rapid fabrication of prototype devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sharma, Huebner, S. Srisa-Art, M., Hollfelder, F. Ebel, J.B. and deMello, A.J. Lab Chip 8, 1244 (1244)Google Scholar
2 Joanicot, M. and Ajdari, A. Science 309, 887 (887)10.1126/science.1112615Google Scholar
3 Christopher, G.F. and Anna, S.L., J.Phys D:Appl.Phys. 40, R319 (2007).10.1088/0022-3727/40/19/R01Google Scholar
4 Millman, J.R. Bhatt, K.H. Prevo, B.G. and Velev, O.D. Nature Materials 4, 98 (98)10.1038/nmat1270Google Scholar
5 Miller, O.J. Bernath, K. Agresti, J.J. Amitai, G. Kelly, B.T. Mastrobattista, E. Tally, V. Magdassi, S. Tawfik, D.S. and Griffiths, A.D. Nature Methods 3(7), 561 (2006).10.1038/nmeth897Google Scholar
6 Ong, W.L. Hua, J. Zhang, B. Teo, T.Y. Zhuo, J. Nguyen, N.T. Ranganathan, N. and Yobas, L. Sensors and Actuators A138 203 (203)Google Scholar
7 Courtois, F. Olguin, L.F. Whyte, G. Bratton, D. Huck, W.T.S. Abell, C. and Hollfelder, F., Chem Biochem 9, 439 (439)Google Scholar
8 Fidalgo, L.M. Whyte, G. Bratton, D. Kaminski, C.F. Abell, C. and Huck, W.T.S., Angew.Chem.Int.Ed. 47, 2042 (2042)10.1002/anie.200704903Google Scholar
9 Lorenz, H. Paratte, L. Luthier, R. Rooij, N.F. de and Renaud, P. Sensors and Actuators A53, 364 (364)Google Scholar
10 Stephan, K. Pittet, P. Renaud, L. Kleimann, P. Morin, P. Ouaini, K. and Ferrigno, R. J. Micromech. Microeng. 17 N69 (2007).10.1088/0960-1317/17/10/N01Google Scholar
11 Tsai, Y.C. Jen, H.P. Lin, K.W. and Hsieh, Y.Z. Journal of Chromatography A1111, 267 (267)Google Scholar
12 Vulto, P. Glade, N. Altomare, L. Bablet, J. Tin, L. Del, Medoro, G. Chartier, I. Manaresi, N. Tartagni, M. and Guerrieri, R. Lab Chip 5 158 (158)10.1039/b411885eGoogle Scholar
13 Piruska, A. Nikcevik, I. Lee, S.H. Ahn, C. Heinman, W.R. Limbach, P.A. and Seliskar, C.J. Lab Chip. 5 1348 (1348)10.1039/b508288aGoogle Scholar
14 Zhao, S. Cong, H. and Pan, T. Lab Chip. DOI: 10.1039/b817925e (2009).10.1039/b817925eGoogle Scholar