Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:46:30.151Z Has data issue: false hasContentIssue false

Fabrication of Isolated Nanoparticle Circuitry Via Lensless Optical Tweezing (“L. O. T. s”)

Published online by Cambridge University Press:  10 February 2011

M. T. Dearing
Affiliation:
Laboratory for Mesoscopics and Quantum Microscopies and Department of Physics, Illinois Wesleyan University, Bloomington, Illinois 61702–2900, [email protected]
G. C. Spalding
Affiliation:
Laboratory for Mesoscopics and Quantum Microscopies and Department of Physics, Illinois Wesleyan University, Bloomington, Illinois 61702–2900, [email protected]
Get access

Abstract

We propose a novel method for trapping a nanometer-scale particle into a stable structure useful for a variety of interesting electrical measurements. The particle to be trapped can be dielectric or metallic, magnetic or non-magnetic. Our methodology was developed, in part, to ensure the absence of extraneous nanoparticles in the region of the device under test; it also allows a possible feedback mechanism to indicate when a nanoparticle has been successfully trapped. In particular, we irradiate a substrate containing a tiny etch-pit hole. On the transmission side of the substrate, the diffracted or evanescent optical fields should contain large enough gradients to localize a nanoparticle to the region of the hole.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.e.g, Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, 699 (1997).Google Scholar
2.e.g., Bezryadin, A., Dekker, C., and Schmid, G., Appl. Phys. Lett. 71, 1273 (1997).Google Scholar
3.Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., Chu, S., Opt. Lett. 11, 288 (1986).Google Scholar
4.Svoboda, K. and Block, S. M., Opt. Lett. 19, 930 (1994).Google Scholar
5.Novotny, L., Bian, R. X., Xie, X. S., Phys. Rev. Lett. 79, 645 (1997).Google Scholar
6.Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W., and Lezec, H. J., Phys. Rev. B 58, 6779 (1998).Google Scholar
7.Bethe, H. A., Phys. Rev. 66, 163 (1944).Google Scholar
8.Harada, Y., Asakura, T., Opt. Commun. 124, 529 (1996).Google Scholar
9.Gueron, S., Mandar Deshmukh, M., Myers, E. B., Ralph, D. C., Phys. Rev. Lett. 83, 4148 (1999).Google Scholar