Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T05:49:13.906Z Has data issue: false hasContentIssue false

Fabrication of Enhancement-Mode GaN-Based Metal–Insulator-Semiconductor Field Effect Transistor

Published online by Cambridge University Press:  15 March 2011

P. Chen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
R. Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Y.G. Zhou
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
S.Y. Xie
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Z.Y. Luo
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Z.Z. Chen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
W.P. Li
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
S.L. Gu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China
Y.D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P.R. China, E-mail: [email protected]
Get access

Abstract

An enhancement-mode GaN metal-insulator-semiconductor field-effect transistor was successfully fabricated on a GaN/AlGaN/GaN double heterojunction structure with SiO2 as insulator layer. The enhancement mode DC characteristics have been achieved in the device with a gate length of 6 μm and a gate width of 100 μm. The device exhibited a DC transconductance of 0.6 mS/mm and a maximum drain-source current of 5 mA/mm. The gate leakage current is lower than 10−6 A at a bias of -10 V and the gate breakdown voltage is higher than 20 V. The channel stands a good chance of forming by hole accumulation between the top GaN layer and the AlGaN layer. The p-channel can be attributed to the presence of a piezoelectric field in the heterojunction, and the strongly asymmetric band bending and carriers distribution induced by the piezoelectric field. High-frequency capacitance-voltage measurement also gives a circumstantial evidence of the presence of a p-channel in the device structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yoshida, S., Suzuki, J., J. Appl.. Phys. 85: (11), 7931 (1999).Google Scholar
2 Daumiller, I., Kirchner, C., Kamp, M., et al. IEEE Electr. Device. Lett. 20 (9), 448 (1999).Google Scholar
3 Ren, F., hong, M, Chu, S.N.G., Marcus, M.A., Schurman, M.J., Baca, A., Pearton, S.J. andAbernathy, C.R., Appl. Phys. Lett. 73, 3893 (1998).Google Scholar
4 Binari, S.C., Rowland, L.B., Kelner, G., Kruppar, W., Dietrich, H.B., Doverspike, K., and Gaskill, D.K., in 1994 Int. Sym. Compound Semiconductors Proc., ed. Goronkin, H., IOP Publishing, Bristol, pp. 459. (1995).Google Scholar
5 Chen, P., Zhang, R., Zhou, Y.G., Shen, B., Luo, Z.Y., Bu, H.M., Li, W.P., Chen, Z.Z., Xie, S.Y., Jiang, R.L. andZheng, Y.D., “The High-frequency Capacitance-voltage Behavior of PECVD Grown SiO2/n-GaN in Deep Depletion,” (unpublished).Google Scholar
6 Casey, H.C. Jr., Fountain, G.G., Alley, R.G., Keller, B.P., and DenBarrs, Steven P., Appl. Phys. Lett. 68, 1850 (1996).Google Scholar
7 Shen, B., Zhou, Y.G., Chen, Z.Z., Chen, P., Zhang, R., Shi, Y., Zheng, Y.D., Tong, W. andPark, W., Appl.Phys.A, 68, 593 (1999)Google Scholar
8 Bykhovski, A., Gelmont, B., and Shur, M., J. Appl. Phys. 74, 6734 (1993).Google Scholar
9 Binari, S.C., Redwing, J.M., Kelner, G., and Kruppa, W., Electron. Lett. 33, 242 (1997).Google Scholar
10 Redwing, J.M., Tischler, M.A., Flynn, J.S., Elhamri, S., Ahoujja, M., Newrock, R.S., and Mitchel, W.C., Appl. Phys. Lett. 69, 963 (1996).Google Scholar
11 Ramvall, P., Aoyagi, Y., Kuramata, A., Hacke, P., and Horino, K., Appl. Phys. Lett. 74, 3866 (1999).Google Scholar