Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:45:54.624Z Has data issue: false hasContentIssue false

Fabrication of Closed packed Single-walled Carbon Nanotube film with nanometer thickness

Published online by Cambridge University Press:  01 February 2011

Jun Matsui
Affiliation:
[email protected], Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan, +81-22-217-5639, +81-22-217-5639
Kohei Yamamoto
Affiliation:
[email protected], Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
Tokuji Miyashita
Affiliation:
[email protected], Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
Get access

Abstract

Closed packed film of single-walled carbon nanotubes (SWCNTs) with nanometer thickness was fabricated using a liquid-liquid interface. SWCNT was solubilized into water using sodium dodecyl sulfate as a surfactant. The SWCNTs in SDS-water suspension were used as a water phase and n-hexane was added to the suspension to form a liquid-liquid interface. After addition of ethanol to the mix solution, SWCNTs were assembled at the interface. The film form at the interface was transferred onto a silicon substrate. The AFM image of the transferred film shows a closed packed SWCNT film with a few nanometers thicknesses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Caron Nanotubes”, ed. Endo, M, S, Iijima and Dresselhaus, S. M. (Elsevier, 1996).Google Scholar
2.Physical Properties of Carbon Nanotubes”, ed. Saito, R., Dresselhaus, G., and Dresselhaus, S. M. (Imperial College Press, 1998)Google Scholar
3. Baughman, R. H., Zakhidov, A. A., and Heer, W. A. de, Science 297, 787 (2002).Google Scholar
4. Saran, N., Parikh, K., Suh, D. S., Munoz, E., Kolla, H., and Manohar, S. K., J. Am. Chem. Soc. 126, 4462 (2004).Google Scholar
5. Bradley, K., Gabriel, J. C. P., and Gruner, G., Nano Lett. 3, 1353 (2003).Google Scholar
6. Artukovic, E., Kaempgen, M., Hecht, D. S., Roth, S., and GrUner, G., Nano Lett. 5, 757 (2005).Google Scholar
7. Meitl, M. A., Zhou, Y. X., Gaur, A., Jeon, S., Usrey, M. L., Strano, M. S., and Rogers, J. A.,Nano Lett. 4, 1643 (2004).Google Scholar
8. Armitage, N. P., Gabriel, J. C. P., and Gruner, G., J. Appl. Phys. 95, 3228 (2004).Google Scholar
9. Kim, Y., Minami, N., Zhu, W. H., Kazaoui, S., Azumi, R., and Matsumoto, M., Jpn. J. Appl.Phys. Part 1 42, 7629 (2003).Google Scholar
10. Guo, Y. Z., Minami, N., Kazaoui, S., Peng, J. B., Yoshida, M., and Miyashita, T., Physica B 323, 235 (2002).Google Scholar
11. Shim, B. S., and Kotov, N. A., Langmuir 21, 9381 (2005).Google Scholar
12. Sato, M., and Sano, M., Langmuir 21, 11490 (2005).Google Scholar
13. Paloniemi, H., Lukkarinen, M., Aaritalo, T., Areva, S., Leiro, J., Heinonen, M., Haapakka, K., and Lukkari, J., Langmuir 22, 74 (2006).Google Scholar
14. Matsui, J., Iko, M., Inokuma, N., Orikasa, H., Mitsuishi, M., Kyotani, T., and Miyashita, T.,Chem. Lett. 35, 42 (2006).Google Scholar
15. Matsui, J., Yamamoto, K., Inokuma, N., Orikasa, H., Kyotani, T., and Miyashita, T., J. Mater.Chem. 17, 3806 (2007).Google Scholar
16. O‘connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., Rialon, K.L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J. P., Hauge, R. H., Weisman, R. B., and Smalley, R. E., Science 297, 593 (2002).Google Scholar