Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T09:11:43.421Z Has data issue: false hasContentIssue false

Fabrication Of Carbon Nanoribbons Via Chemical Treatment Of Carbon Nanotubes And Their Self-Assembling.

Published online by Cambridge University Press:  05 March 2015

P. Y. Arquieta Guillén
Affiliation:
Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Nuevo León
Edgar de Casas Ortiz
Affiliation:
Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Nuevo León
Oxana Kharissova
Affiliation:
Facultad de Ciencias Físico-Matemáticas de la Universidad Autónoma de Nuevo León Centro de Investigación, Innovación y Desarrollo en Ingeniería y Tecnología. Nuevo León (CIIDIT)
Get access

Abstract

Some potential applications of the nanoribbons and nanorods occur in the medical field, using gold nanoribbon therapies against cancer cells because they have absorption in the near infrared region. In this paper, the nanoribbons were obtained by physical-chemical method based on multilayer carbon nanotubes functionalized with carboxylic radical groups (-COOH). The obtained material was characterized by Scanning Transmission Electron Microscopy (STEM) and Infrared Spectroscopy (FTIR). The obtained nanoribbons have a diameter of 320 nm with preferably 126° angle in their morphology.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gong, Jian Ru, Graphene - Synthesis, Characterization, Properties and Applications, (2011).CrossRefGoogle Scholar
Geim, A.K. and Novoselov, K.S., Nature materials, 6, 183191, (2007).CrossRefGoogle Scholar
Kharissova, O. V. and Kharisov, B. I., The Open Inorg. Chem. J. 2, 3949, (2008).CrossRefGoogle Scholar
Vemuru, S. M., Wahi, R., Nagarajaiah, S., and Ajayan, P. M., J. Strain Analysis, 44, 555562, (2009).10.1243/03093247JSA535CrossRefGoogle Scholar
Sun, Y., Fu, K., Lin, Y., and Huang, W., Acc Chem. Res. 35, 10961104, (2002).CrossRefGoogle Scholar
Tan, Y., Yang, B., Parvez, K., Narita, A., Osella, S., Beljonne, D., Feng, X., and Müllen, K., Nature communications 4, 17, (2013).Google Scholar
Fernández, P. S., Tesis Doctoral: Modificación superficial de materiales de carbono, http://digital.csic.es/bitstream/10261/34323/1/TESIS-Pablo%20Solis.pdf, (2011).Google Scholar
Grzelczak, M., Vermant, J., Furst, E. M., and Liz-Marzán, L. M., ACS Nano 4, 35913605, (2010).CrossRefGoogle Scholar
Duan, H., Wang, D., Kurth, D. G., and Möhwald, H., Angew. Chem. 116, 57575760, (2004).10.1002/ange.200460920CrossRefGoogle Scholar
Ritikos, R., Rahman, S. A., Gani, S. M. A., Muhamad, M. R., and Yoke, K. Y., Carbon 49, 18421848, (2011).CrossRefGoogle Scholar
Kosynkin, D V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., and Tour, J. M., Nature 458, 872876, (2009).10.1038/nature07872CrossRefGoogle Scholar
Huang, X., El-Sayed, I. H., Qian, W., and El-Sayed, M. A., J. Am. Chem. Soc. 128, 21152120, (2006).CrossRefGoogle Scholar
Vinayan, B. P., Nagar, R., Sethupathi, K. and Ramaprabhu, S., J. Phys. Chem. C, 115, 15679 (2011)Google Scholar
Eswaraiah, V., Aravind, S. S. J. and Ramaprabhu, S., J. Mater. Chem., 21, 6800 (2011)CrossRefGoogle Scholar
Kunping, L., Jingjing, Z., Guohai, Y., Chunming, W. and Jun-Jie, Z., Electrochem. Commun., 12, 402 (2010)Google Scholar
Li, L.-L., Liu, K.-P., Yang, G.-H., Wang, C.-M., Zhang, J.-R. and Zhu, J.-J., Adv. Funct. Mater., 21, 869 (2011)CrossRefGoogle Scholar