Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T06:51:53.356Z Has data issue: false hasContentIssue false

Fabrication of a TE Mode InGaAsP Active Waveguide Optical Isolator Based on the Nonreciprocal Loss shift

Published online by Cambridge University Press:  01 February 2011

Hiromasa Shimizu
Affiliation:
Research Center for Advanced Science and Technology, The University of Tokyo, JSTSORST 4–6–1 Komaba Meguro-ku Tokyo 153–8904 Japan
Yoshiaki Nakano
Affiliation:
Research Center for Advanced Science and Technology, The University of Tokyo, JSTSORST 4–6–1 Komaba Meguro-ku Tokyo 153–8904 Japan
Get access

Abstract

We have fabricated a TE mode InGaAsP active waveguide optical isolator based on the nonreciprocal loss shift in an optical fiber telecommunication wavelength of 1550nm. We demonstrated a TE mode nonreciprocal loss shift of 9.3dB/mm under a magnetic field of +/-1kG in the facricated InGaAsP active waveguide with Fe on an InP substrate at a wavelength of 1560nm. This result opens a way to the monolithic integration of semiconductor-waveguide-type optical isolators with edge emitting semiconductor lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ando, K., Okoshi, T., and Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).Google Scholar
2. Sugimoto, N., Shintaku, T., Tate, A., Terui, H., Shimokozono, M., Kubota, E., Ishii, M., and Inoue, Y., IEEE., Photon. Tech. Lett. 11, 355 (1999).Google Scholar
3. Shintaku, T., Appl. Phys. Lett. 73, 1946 (1998).Google Scholar
4. Levy, M., Osgood, R. M. Jr, Hegde, H., Cadieu, F. J., and Fratello, V. J., IEEE., Photon. Tech. Lett. 8, 903 (1996).Google Scholar
5. Yokoi, H., Mizumoto, T., Takano, T., and Shinjo, N., Appl. Opt. 38, 7409 (1999).Google Scholar
6. Fujita, J., Levy, M., Osgood, R. M. Jr, Wilkens, L., and Dotsch, H., Appl. Phys. Lett. 76, 2158 (2000).Google Scholar
7. Yokoi, H., Mizumoto, T., Shinjo, N., Futakuchi, N., and Nakano, Y., Appl. Opt. 39, 6158 (2000).Google Scholar
8. Takenaka, M. and Nakano, Y., Proceeding of 11 International Conference on Indium Phosphide and related materials., 289 (1999).Google Scholar
9. Zaets, W., and Ando, K., IEEE., Photon. Tech. Lett. 11, 1012 (1999).Google Scholar
10. Shimizu, H. and Tanaka, M., Appl. Phys. Lett. 81, 5248 (2002).Google Scholar
11. Vanwolleghem, M., Van Parys, W., Van Thourhout, D., Baets, R., Lelarge, F., Gauthier-Lafaye, O., Thedrez, B., Wirix-Speetjens, R., Lagae, L., Appl. Phys. Lett., 85, 3980 (2004).Google Scholar
12. Morse, P. M. and Feshbach, H.: Method of Theoretical Physics, McGraw-Hill, New York, (1953).Google Scholar
13. Johnson, P. B. and Christy, R.W., Phys. Rev. B9, 5056 (1974).Google Scholar
14. Krinchik, G. S. and Artemjev, V. A., J. Appl. Phys. 39, 1276 (1968).Google Scholar
15. Shimizu, H. and Nakano, Y., Jpn. J. Appl. Phys. 43, L1561 (2004).Google Scholar