Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-09T09:17:23.776Z Has data issue: false hasContentIssue false

Fabrication of a Polymer Battery based on Polypyrrole Electrodes and a Polymer Gel Electrolyte

Published online by Cambridge University Press:  15 February 2011

Jeffrey G. Killian
Affiliation:
Department of Materials Science and Engineering The Johns Hopkins University Baltimore, MD 21218
B.M. Coffey
Affiliation:
Department of Materials Science and Engineering The Johns Hopkins University Baltimore, MD 21218
T.O. Poehler
Affiliation:
Department of Materials Science and Engineering The Johns Hopkins University Baltimore, MD 21218
P.C. Searson
Affiliation:
Department of Materials Science and Engineering The Johns Hopkins University Baltimore, MD 21218
Get access

Abstract

The electronic conductivity and redox behavior of conjugated polymers make them suitable for charge storage applications. We present preliminary results for an all polymer system consisting of a p-doped polypyrrole cathode and pseudo n-doped polypyrrole/polystyrenesulfonate anode. Using a thin film construction technique, electrodes were assembled into cells using a polymer gel electrolyte based on polyacrylonitrile, which has a high room temperature conductivity. Charge capacities of 13 mAh g−1 based on the mass of the electroactive polymer in the cathode have been obtained for over 100 cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., E.J.Louis, , Gau, S.C., and McDiarmid, A.G., Phys. Rev. Lett. 39 1098 (1977).Google Scholar
2 U.S. Patents # 4,728,589;4,532,195; 4,869,979;4,442,187.Google Scholar
3 Coffey, B., Madsen, P.V., Poehler, T.O., and Searson, P.C., J. Electrochem. Soc. 142 (2), 321325 (1995).Google Scholar
4 Watanabe, M., Kanba, M., Nagaoka, K., and Shinohara, I., J. Polym. Sc. 21, 939, (1983). // K.M. Abraham and M. Alamgir, J. Electrochem. Soc. 137, 1657 (1990).Google Scholar
5 Momma, T., Nishimura, K., and Osaka, T., T., ECS Extended Abstracts 93 (1), 92 (1993) // T. Osaka, T. Momma, and K. Nishimura, Chem. Lett., 1787 (1992).Google Scholar
6 Watanabe, M., Kanba, M., Nagaoka, K., and Shinohara, I., J. Polym. Sc. 21 939 (1983) // M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, and I Shinohara, Makromol. Chem., Rapid Comm. 2 741 (1981) // K. M. Abraham and M. Alamgir, J. Electrochem. Soc. 137, 1657 (1990). // G. Dautzenberg, F. Croce, S. Passerini, and B. Scrosati, Chem. Mater. 6 538 (1994).Google Scholar
7 Zhong, C. and Doblhofer, K., Electrochim. Acta. 35 1971, (1990). // T. Shimidzu, A. Ohtani, T. Iyoda, and K. Honda, J. Chem. Soc. Chem. Commun. 327 (1987) // T. Shimidzu, T. Ohtani, T. Iyoda, and K. Honda, J. Electroanal. Chem. 224 123 (1987).Google Scholar
8 Mohammadi, A., Inganas, O., and Lundstrom, I., J. Electrochem. Soc. 133 947, 1986.Google Scholar
9 Shimidzu, T., Ohtani, A., Iyoda, T., and Honda, K., J. Chem. Soc. Chem. Commun., 327 (1987).Google Scholar
10 Shimidzu, T., Ohtani, A., Iyoda, T., and Honda, K., J. Chem. Soc. Chem. Commun., 327 (1987).Google Scholar