Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:58:46.877Z Has data issue: false hasContentIssue false

Fabrication of 239/238Pu-Zirconolite Ceramic Pellets by Natural Sintering

Published online by Cambridge University Press:  01 February 2011

T. Advocat
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
F. Jorion
Affiliation:
DEN/DRCP/SE2A), CEA-Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
T. Marcillat
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
G. Leturcq
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
X. Deschanels
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
J. M. Boubals
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
L. Bojat
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
P. Nivet
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
S. Peuget
Affiliation:
Commissariat à l'Énergie Atomique, (DEN/DIEC/SCDV-SESC
Get access

Abstract

Zirconolite is a potential inorganic matrix that is currently investigated in France, in the framework of the 1991 radioactive waste management law, with a view to provide durable containment of the trivalent and tetravalent minor actinides like neptunium, curium, americium and small quantities of unrecyclable plutonium separated from other nuclear waste. To confirm the actinide loading capacity of the zirconolite calcium site and to study the physical and chemical stability of this type of ceramic when subjected to alpha self-irradiation, zirconolite ceramic pellets were fabricated with 10 wt% plutonium oxide (isotope 239 or 238). The 55 pellets are dense (> 93.3% of the theoretical density on average) and free of cracks. They are characterized by a grain size of between 10 and 20 micrometers. X-ray diffraction analyses confirmed the presence of the zirconolite 2M crystalline structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Les recherches pour la gestion des déchets nucléaires: les résultats d'aujourd'hui, les solutions de demain. Clefs CEA 46, Spring 2002.Google Scholar
2. Madic, C., Lecomte, M., Baron, P. and Boullis, B., C. R. Physique 3, 797 (2002).Google Scholar
3. Advocat, T. et al. Proceedings of the Global'01 International Conference on “Back-End of the Fuel Cycle: from research to solutions, 9/13 september, Paris, 2001.Google Scholar
4. Vance, E.R., Begg, B.D., Day, R.A., Ball, C.J.. Mat. Res. Soc. Symp. Proc. 353, 767774, 1995.Google Scholar
5. Hart, K.P., Vance, E.R., Stewart, M.W.A., Weir, J., Carter, M.L., Hambley, M., Brownscombe, A., Day, R. A., Leung, S., Ball, C.J., Ebbinghaus, B., Gray, L., Khan, T.. Mat. Res. Soc. Symp. Proc. 506, 161168, 1998.Google Scholar
6. Strachan, D.M., Scheele, R. D., Buchmiller, W.C., Vienna, J.D., Sell, R. L., Elovich, R.J.. PNNL-13251 report, May 2000.Google Scholar
7. Clinard, F.W., Hobbs, L.W., Land, C.C., Peterson, D.E., Journal of Nuclear Materials 105, 248256 (1982).Google Scholar
8. Weber, W.J., Wald, J.W., Matzke, Hj., Journal of Nuclear Materials 138, 196209 (1986).Google Scholar
9. Lumpkin, G.. Journal of Nuclear Materials 289, 136166, (2001).Google Scholar
10. Leturcq, G. et al., (this conference).Google Scholar