Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:55:36.943Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Electrically Functional Lanthanum Hexaboride Thin Films on Ultrasmooth Sapphire Substrates

Published online by Cambridge University Press:  01 February 2011

Yushi Kato
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yusaburo Ono
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Yasuyuki Akita
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Makoto Hosaka
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Naoki Shiraishi
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Nobuo Tsuchimine
Affiliation:
[email protected], TOSHIMA Manufacturing Company Limited, Saitama, Japan
Susumu Kobayashi
Affiliation:
[email protected], TOSHIMA Manufacturing Company Limited, Saitama, Japan
Mamoru Yoshimoto
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative & Engineered Materials, Yokohama, Japan
Get access

Abstract

The crystal growth of lanthanum hexaboride (LaB6) thin films was examined by applying the laser molecular beam epitaxy (laser MBE) process. C-axis (100) highly-oriented LaB6 thin films could be fabricated on ultrasmooth sapphire (α-Al2O3 single crystal) (0001) substrates with atomic steps of 0.2 nm in height and atomically flat terraces. The obtained film exhibited a smooth surface with root mean square roughness of 0.15 nm. The lattice parameter of the LaB6 thin film was close to the bulk value reported previously. In the case of deposition on commercial mirror-polished sapphire substrates, the grown film was amorphous. The resistivity of the prepared crystalline LaB6 thin films was as low as 2.2 × 10−4 Ω cm and almost constant in the temperature range of 10–300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandrus, D., Sales, B. C., and Jin, R., Phys. Rev. B, 64, 012302 (2001).Google Scholar
2. Aono, M., Nishitani, R., Oshima, C., Tanaka, T., Bannai, E., and Kawai, S., J. Appl. Phys., 50, 4802 (1979).Google Scholar
3. Aono, M., Oshima, C., Tanaka, T., Bannai, E., and Kawai, S., J. Appl. Phys., 49, 2761 (1978).Google Scholar
4. Chen, C.-H., Aizawa, T., Iyi, N., Sato, A., and Otani, S., Journal of Alloys and Compounds, 366, L6–L8 (2004).Google Scholar
5. Aono, M., Tanaka, T., Bannai, E., Oshima, C., and Kawai, S., Phys. Rev. B, 16, 3489 (1977).Google Scholar
6. Hasegawa, A. and Yanase, A., J. Phys. F: Metal Phys., 7, 1245 (1977).Google Scholar
7. Tanaka, T., Akahane, T., Bannai, E., Kawai, S., Tsuda, N., and Ishizawa, Y., J. Phys. C: Solid State Phys., 9, 1235 (1976).Google Scholar
8. Kawanowa, H., Souda, R., Otani, S., Ikeuchi, T., Gotoh, Y., Stracke, P., Krischok, S., and Kempter, V., Surf. Sci., 482–485, 250253 (2001).Google Scholar
9. Zhang, M., Yuan, L., Wang, X., Fan, H., Wang, X., Wu, X., Wang, H., and Qian, Y., J. Solid State Chem., 181, 294297 (2008).Google Scholar
10. Sobczak, R. J., and Sienko, M. J., J. Less-Com. Metals, 67, 167 (1979).Google Scholar
11. Fisk, Z., Ott, H. R., Barzykin, V., and Gor'kov, L. P., Physica B, 312–313, 808810 (2002).Google Scholar
12. Vonlanthen, P. et al., Physica B, 284–288, 13611362 (2000).Google Scholar
13. Zhang, H., Zhang, Q., Tang, J., and Qin, L.-C., J. Am. Chem. Soc., 127, 2862 (2005).Google Scholar
14. Mitterer, C., J. Solid State Chem., 133, 279291 (1997).Google Scholar
15. Nakano, T., Baba, S., Kobayashi, A., Kinbara, A., Kajiwara, T., and Watanabe, K., J. Vac. Sci. Technol. A, 9, 547 (1991).Google Scholar
16. Terasaki, I., Uchida, S., Tajima, S., Uchinokura, K., and Tanaka, S., J. Phys. Soc. Jpn., 59, 1017 (1990).Google Scholar
17. Craciun, V. and Craciun, D., Appl. Surf. Sci., 247, 384389 (2005).Google Scholar
18. Late, D. J., Date, K. S., More, M. A., Misra, P., Singh, B. N., Kukreja, L. M., Dharmadhikari, C. V., and Joag, D. S., Nanotechnology, 19, 265605 (2008).Google Scholar
19. Late, D. J., More, M. A., Misra, P., Singh, B. N., Kukreja, L. M., and Joag, D. S., Ultramicroscopy, 107, 825832 (2007).Google Scholar
20. Tashiro, J., Sasaki, A., Akiba, S., Satoh, S., Watanabe, T., Funakubo, H., and Yoshimoto, M., Thin Solid Films, 415, 272275 (2002).Google Scholar
21. Maeda, T., Yoshimoto, M., Ohnishi, T., Lee, G. H., and Koinuma, H., J. Cryst. Growth, 177, 95101 (1997).Google Scholar
22. Sasaki, A., Hara, W., Matsuda, A., Tateda, N., Otaka, S., Akiba, S., Saito, K., Yodo, T., and Yoshimoto, M., Appl. Phys. Lett., 86, 231911 (2005).Google Scholar
23. Hara, W., Liu, J., Sasaki, A., Otaka, S., Tateda, N., Saito, K., and Yoshimoto, M., Thin Solid Films, 516, 28892893 (2008).Google Scholar
24. Sasaki, A., Liu, J., Hara, W., Akiba, S., Saito, K., Yodo, T., and Yoshimoto, M., J. Mater. Res., 19, 2725 (2004).Google Scholar
25. Yoshimoto, M., Maeda, T., Ohnishi, T., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., Miyamoto, A., and Koinuma, H., Appl. Phys. Lett., 67, 2615 (1995).Google Scholar