Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:58:16.905Z Has data issue: false hasContentIssue false

F+ implants in crystalline Si: the Si interstitial contribution

Published online by Cambridge University Press:  01 February 2011

Pedro Lopez
Affiliation:
[email protected], Universidad de Valladolid, Electricidad y Electronica, E.T.S.I. Telecomunicacion. Campus Miguel Delibes s/n, Valladolid, 47011, Spain, +34 983 423683 ext. 5654, +34 983 423675
Lourdes Pelaz
Affiliation:
[email protected], Universidad de Valladolid, Electricidad y Electronica, E.T.S.I. Telecomunicacion. Campus Miguel Delibes s/n, Valladolid, 47011, Spain
Ray Duffy
Affiliation:
[email protected], NXP semiconductors, Leuven, 3001, Belgium
P. Meunier-Beillard
Affiliation:
[email protected], NXP semiconductors, Leuven, 3001, Belgium
F. Roozeboom
Affiliation:
[email protected], NXP semiconductors, Eindhoven, 5656, Netherlands
K. van der Tak
Affiliation:
[email protected], Philips Research Laboratories Eindhoven, Eindhoven, 5656, Netherlands
P. Breimer
Affiliation:
[email protected], Philips Research Laboratories Eindhoven, Eindhoven, 5656, Netherlands
J. G. M. van Berkum
Affiliation:
[email protected], Philips Research Laboratories Eindhoven, Eindhoven, 5656, Netherlands
M. A. Verheijen
Affiliation:
[email protected], Philips Research Laboratories Eindhoven, Eindhoven, 5656, Netherlands
M. Kaiser
Affiliation:
[email protected], Philips Research Laboratories Eindhoven, Eindhoven, 5656, Netherlands
Get access

Abstract

In this work the Si interstitial contribution of F+ implants in crystalline Si is quantified by the analysis of extended defects and B diffusion in samples implanted with 25 keV F+ and/or 40 keV Si+. We estimate that approximately 0.4-0.5 Si interstitials are generated per implanted F+ ion, which is in good agreement with the value resulting from the net separation of Frenkel pairs obtained from MARLOWE simulations. The damage created by F+ implants in crystalline Si may explain the presence of extended defects in F-enriched samples and the evolution of B profiles during annealing. For short anneals, B diffusion is reduced when F+ is co-implanted with Si+ compared to the sample only implanted with Si+, due to the formation of more stable defects that set a lower Si interstitial supersaturation. For longer anneals, when defects have dissolved and TED is complete, B diffusion is higher because the additional damage created by the F+ implant has contributed to enhance B diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Impellizzeri, G., Mirabella, S., Priolo, F., Napolitani, E., Carnera, A., J. Appl. Phys. 99, 103510 (2006).Google Scholar
2. Lopez, G. M., Fiorentini, V., Impellizzeri, G., Mirabella, S., Napolitani, E., Phys. Rev. B 72, 045219 (2005).Google Scholar
3. Boninelli, S., Claverie, A., Impellizzeri, G., Mirabella, S., Priolo, F., Napolitani, E., Cristiano, F., Appl. Phys. Lett. 89, 171916 (2006).Google Scholar
4. Noda, T., J. Appl. Phys. 96, 3721 (2004).Google Scholar
5. Mubarek, H. A. W. El, Bonar, J. M., Dilliway, G. D., Ashburn, P., Karunaratne, M., Willoughby, A. F., Wang, Y., Hemment, P. L. F., Price, R., Zhang, J., Ward, P., J. Appl. Phys. 96, 4114 (2004).Google Scholar
6. Park, J., Huh, Y.-J., Hwang, H., Appl. Phys. Lett. 74, 1248 (1999).Google Scholar
7. Brotherton, S. D., Gowers, J. P., Young, N. D., Clegg, J. B., Ayres, J. R., J. Appl. Phys. 60, 3567 (1986).Google Scholar
8. Duffy, R., Dal, M. J. H. Van, Pawlak, B. J., Kaiser, M., Degroote, B., Kunnen, E., Altamirano, E., Appl. Phys. Lett. 90, 241912 (2007).Google Scholar
9. Lopez, P., Pelaz, L., Duffy, R., Meunier-Beillard, P., Roozeboom, F., Tak, K. van der, Breimer, P., Berkum, J. G. M. Van, Verheijen, M. A., Kaiser, M., J. Vac. Sci. Technol. B 26, 377 (2008).Google Scholar
10. Venezia, V. C., Haynes, T. E., Agarwal, A., Pelaz, L., Gossmann, H.-J., Jacobson, D. C., Eaglesham, D. J., Appl. Phys. Lett. 74, 1299 (1999).Google Scholar
11. Eaglesham, D. J., Stolk, P. A., Gossman, H.-J., Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
12. Pelaz, L., Gilmer, G. H., Jaraiz, M., Herner, S. B., Gossmann, H.-J., Eaglesham, D. J., Hobler, G., Rafferty, C. S., Barbolla, J., Appl. Phys. Lett. 73, 1421 (1998).Google Scholar
13. Cherkashin, N., Calvo, P., Cristiano, F., Mauduit, B. de, Claverie, A., Mater. Res. Soc. Symp. Proc. 810, 103 (2004).Google Scholar
14. Listebarger, J. K., Jones, K. S., Slinkman, J. A., J. Appl. Phys. 73, 4815 (1993).Google Scholar
15. Diebel, M., Dunham, S. T., Mater. Res. Soc. Symp. Proc 717, C4.5.1 (2002).Google Scholar