Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:42:31.244Z Has data issue: false hasContentIssue false

Extending HgCdTe Photovoltaic Detector Technology to Cutoff Wavelengths of 17 μm

Published online by Cambridge University Press:  15 February 2011

E. E. Krueger
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
G. N. Pultz
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
K. R. Maschhoff
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
S. P. Tobin
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
P. W. Norton
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
J. H. Rutter
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
M. B. Reine
Affiliation:
Loral Infrared & Imaging Systems, Lexington, Massachusetts 02173
Get access

Abstract

We are developing two-layer LPE P-on-n HgCdTe photovoltaic detector arrays with cutoff wavelengths out to 17 μm for a NASA spaceborne infrared radiometer. These bilinear multiplexed arrays will operate at 60 K, and must achieve sensitivities approaching the background limit for a background photon flux of 2×1015 photons/cm2-sec. The detectors must operate at reverse bias voltage to interface with silicon CMOS multiplexer circuits, and must exhibit low 1/f noise.

This paper reviews progress toward these demanding requirements. The limiting junction current mechanisms for HgCdTe photodiodes at these very long cutoff wavelengths are reviewed. Data are presented for both CdTe-passivated and ZnS-passivated arrays at 60 K with cutoff wavelengths of 15.4−16.9 μm. Average R0A products of 13 ohm-cm2 and quantum efficiencies of 89% have been achieved for cutoff wavelengths of 15.4 μm at 60 K. These array data demonstrate the potential for VLWIR PV HgCdTe to meet the requirements for advanced NASA applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elachi, C., Introduction to the Physics and Techniques of Remote Sensing, Chap. 8 (Wiley, New York, 1987).Google Scholar
2. Chahine, M. T., ”AIRS: The Atmospheric Infrared Sounder,” Optics & Photonics News, pp. 25–27, October 1991.Google Scholar
3. Morse, P., Miller, C. and Pagano, R., ”Design Overview of the Atmospheric Infrared Sounder (AIRS),” OSA Annual Meeting, Boston, MA, Nov. 1990.Google Scholar
4. Wang, C. C., J. Vac. Sci. Technol. B9, 1740 (1991).CrossRefGoogle Scholar
5. Tung, T., Kalisher, M. H., Stevens, A. P., and Herning, P. E., Mat. Res. Soc. Symp. Proc. 90, 321 (1987).Google Scholar
6. Krueger, E. E., Pultz, G. N., Norton, P. W., Mroczkowski, J. A., Weiler, M. H. and Reine, M. B., Mat. Res. Soc. Symp. Proc. 216, 93 (1991).Google Scholar
7. Pultz, G. N., Norton, P. W., Krueger, E. E. and Reine, M. B., J. Vac. Sci. Technol. B9 1724 (1991).CrossRefGoogle Scholar
8. Krueger, E. E., Pultz, G. N., Norton, P. W. and Reine, M. B., ”LWIR HgCdTe Photodiode Development for AIRS,” Final Technical Report for NASA JPL Contract 958606, Feb. 22, 1991.Google Scholar
9. Reine, M. B., Tredwell, T. J. and Sood, A. K., ”Photovoltaic Infrared Detectors” in Semiconductors and Semimetals, Ed. by Willardson, R. K. and Beer, A. C., Vol. 18 (Academic Press, New York, 1981).Google Scholar
10. Reine, M. B., Maschhoff, K. R., Tobin, S. P., Norton, P. W., Mroczkowski, J. A. and Krueger, E. E., 1992 Workshop on Measurement Techniques for Characterization of HgCdTe Materials, Processing, and Detectors, October 15–16, 1992, Danvers, Massachusetts; Proceedings to be published in Semiconductor Science and Technology, 1993.Google Scholar
11. Bratt, P. R., J. Vac. Sci. Technol. A1, 1687 (1983).Google Scholar
12. Kosai, K. and Radford, W. A., J. Vac. Sci. Technol. A8 1254 (1990).Google Scholar
13. Tobin, S. P., Krueger, E. E., Pultz, G. N., Kestigian, M., Wong, K.-K. and Norton, P. W., presented at the U. S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride, October 13–15, 1992, Boston, Massachusetts; to be published in J. Electronic Materials, June 1993.Google Scholar
14. Tennant, W. E., Cockrum, C. A., Gilpin, J. B., Kinch, M. A., Reine, M. B. and Ruth, R. P., J. Vac. Sci. Technol. B10, 1359 1992).Google Scholar