Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:55:20.256Z Has data issue: false hasContentIssue false

Experimental Issues in In-Situ Synchrotron X-Ray Diffraction at High Pressure and Temperature by Using a Laser-Heated Diamond-Anvil Cell

Published online by Cambridge University Press:  10 February 2011

C. S. Yoo
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551, [email protected]
H. Cynn
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551, [email protected]
A. Campbell
Affiliation:
NSLS, Geophysical Laboratory, Carnegie Institute, Washington D.C. 20015
J.-Z. Hu
Affiliation:
NSLS, Geophysical Laboratory, Carnegie Institute, Washington D.C. 20015
Get access

Abstract

An integrated technique of diamond-anvil cell, laser-heating and synchrotron x-ray diffraction technologies is capable of structural investigation of condensed matter in an extended region of high pressures and temperatures above 100 GPa and 3000 K. The feasibility of this technique to obtain reliable data, however, strongly depends on several experimental issues, including optical and x-ray setups, thermal gradients, pressure homogeneity, preferred orientation, and chemical reaction. In this paper, we discuss about these experimental issues together with future perspectives of this technique for obtaining accurate data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boehler, R., von Bargen, N., and Chopelas, A., J. Geophys. Res. 95, 21731 (1990)Google Scholar
2. Brister, K. and Bassett, W., Rev. Sci. Instrum. 66, 2698 (1995)Google Scholar
3. Yoo, C.S., Akella, J., Campbell, A., Hemley, R., and Mao, D., Science 270, 1473 (1995)Google Scholar
4. Andrault, D., Fiquet, G., Kunz, M., Visocekas, F., Häusermann, D., Science 278, 831 (1997).Google Scholar
5. Saxena, S.K., Dubrovinsky, L.S.; Yoo, C.S., Akella, J., Campbell, A.J., Mao, H.K., and Hemley, R.J., Science 275, 94 (1997)Google Scholar
6. Shen, G., Suffy, T.S., Mao, H.K., Hemley, R., Rivers, M.L., submitted (1997)Google Scholar
7. Yoo, C.S., C.S., , Akella, J., and Moriarty, J.A., Phys. Rev. B 48, 15529 (1993)Google Scholar
8. Hu, J., Mao, H.-K., Shu, J., and Hemley, R.J., in High pressure science and technology-1993. edited by Schmidt, S.C., Shaner, J.W., Samara, G.A., and Ross, M., part 1, pp 441, (AIP press, New York, 1994)Google Scholar
9. Carslaw, H.S. and Jaeger, J.C. in Conduction of Heat in Solids. (Clarendon, Oxford, 1959)Google Scholar
10. Yoo, C.S., Holmes, N.C., Ross, M., Webb, D.J., and Pike, C., Phys. Rev. Lett. 70, 3931 (1993)Google Scholar
11. Hemley, R.J., Mao, H.K., Shen, G., Badro, J., Gillet, P., Hanfland, M., Häsermann, D., Science 276, 1242 (1997)Google Scholar
12. Mao, H.K., Wu, Y., Chen, L.C., and Shu, J.F., and Jephcoat, A.P., J. Geophys. Res. 95, 21737(1990)Google Scholar
13. Wells, A.F., in Structural Inorganic Chemistry. Ch 27, pp 939, (Clarendon Press, Oxford, 1975)Google Scholar
14. Duffy, T.S., Hemley, R.J., and Mao, H.K., Phys. Rev. Lett. 74, 1371 (1995)Google Scholar
15. Fei, Y., Mao, H.K., Shu, J., and Hu, J., Phys. Chem. Minerals, 18, 416 (1992)Google Scholar
16. Jephcoat, A.P., Hemley, R.J. and Mao, H.K., Physica B 150, 115 (1988)Google Scholar