Article contents
Experimental Determination of the Two-Dimensional State of Stress and the Orthotropic Elasticity Coefficients for Coatings
Published online by Cambridge University Press: 25 February 2011
Abstract
The state of stress for a uniform coating away from the edges reduces to that of plane stress, two in-plane normal stresses, and an in-plane shear stress. For this state, the interface between the coating and the substrate is totally stress free. Since the substrate and the coating are not interacting mechanically, an internal section of the substrate can be removed creating a tensioned drum-like membrane without altering the stress state. Holographic interferometry of vibrationally excited membranes is used to evaluate the stress. Using this technique, up to thirty vibrational modes can be obtained. This high degree of redundancy enables one to determine the one shear and two normal stresses that act in the plane of the coating. The only physical property requires is the coating density. The density is obtained from commonly reported literature values. Simple variations on the membrane vibration scheme, e.g., cutting the membrane to create a uniaxially tensioned ribbon, enables one to determine the in-plane Poisson's ratio and shearmodulus.
In separate but related experiments on commercially made free-standing films with residual orientation, the above techniques, combined with special free and axially constrainedcompressibility experiments should enable all of the Poisson's ratios and elasticmoduli for an orthotropic material (nine elastic constants) to be determined. Methods for measuring the state of stress and the elastic constants are required to predict the state of stress in complex coating geometries.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991
References
REFERENCES
- 2
- Cited by