Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:26:27.473Z Has data issue: false hasContentIssue false

Excitons bound to structural defects in GaN

Published online by Cambridge University Press:  21 March 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
D. Huang
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
R. J. Molnar
Affiliation:
MIT, Lincoln Laboratory, Lexington, MA 02420, U.S.A.
C. W. Litton
Affiliation:
Air Force Research Laboratory, Wright Patterson AFB, OH 45433, U.S.A.
Get access

Abstract

We analyzed the photoluminescence (PL) spectra of undoped GaN films grown by molecular beam epitaxy on sapphire substrates. While the PL spectra from high-quality samples contain free and bound exciton peaks only, the spectra from some samples involve sharp unidentified peaks in the energy range of 3.0 – 3.45 eV, specifically at 3.21, 3.32, 3.36, and 3.42 eV. We attribute these peaks to excitons bound to defects because of the linear and sometimes superlinear increase in their intensity with excitation density without saturation up to 100 W/cm2. With increasing temperature these peaks quench in a well-known fashion similar to that for excitons. In order to relate the observed peaks to the structural defects, we etched selected samples in hot H3PO4 acid or, alternatively, with photo-electrochemical (PEC) etching at room temperature in the presence of UV-illumination in a dilute KOH solution. In the former case the dislocations were etched leaving etched pits on the surface, while in the latter case the dislocations remained unetched due to a deficit of photogenerated holes at dislocation sites. We found that the 3.42 eV peak disappeared after both hot wet and PEC etching suggesting that the associated defect is at the GaN surface. Peaks at 3.21 and 3.36 eV could be enhanced greatly by PEC etching, which were correlated to bulk dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kornitzer, K., Grehl, M., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., and Porowski, S., Physica B 273–274, 66 (1999).Google Scholar
[2] Dingle, R. and Ilegems, M., Sol. St. Comm. 9, 175 (1971).Google Scholar
[3] Chung, B. C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
[4] Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Salvador, A., Sverdlov, B. N., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 66, 3474 (1995).Google Scholar
[5] Shreter, Y. G., Rebane, Y. T., Davis, T. J., Barnard, J., Darbyshire, M., Steeds, J. W., Perry, W. G., Bremser, M. D., and Davis, R. F., Mat. Res. Soc. Symp. Proc. 449, 683 (1997).Google Scholar
[6] Kornitzer, K., Mayer, M., Mundbrod, M., Thonke, K., Pelzmann, A., Kamp, M., and Sauer, R., Mat. Sci. Forum 258–263, 1113 (1997).Google Scholar
[7] Fischer, S., Steude, G., Hofmann, D. M., Kurth, F., Anders, F., Topf, M., Meyer, B. K., Bertram, F., Schmidt, M., Christen, J., Eckey, L., Holst, J., Hoffmann, A., Mensching, B., and Rauschenbach, B., J. Cryst. Growth 189–190, 556 (1998).Google Scholar
[8] Ren, B. G., Orton, J. W., Cheng, T. S., Dewsnip, D. J., Lacklison, D. E., Foxon, C. T., Malloy, C. H., and Chen, X., MRS Internet J. Nitride Semicond. Res. 1, 22 (1996).Google Scholar
[9] Calleja, E., Sánchez-García, M. A., Sánchez, F. J., Calle, F., Naranjo, F. B., Munoz, E., Jahn, U., and Ploog, K., Phys. Rev. B 62, 16826 (2000).Google Scholar
[10] Huang, D., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Baski, A. A., King, T., and Morkoç, H., Appl. Phys. Lett. 78, 4145 (2001).Google Scholar
[11] Visconti, P., Reshchikov, M. A., Jones, K. M., Wang, D. F., Cingolani, R., Morkoç, H., Molnar, R. J., Smith, D. J., J. Vac. Sci. Technol. B 19, 1328 (2001).Google Scholar
[12] Visconti, P., Jones, K. M., Reshchikov, M. A., Cingolani, R., Morkoç, H., and Molnar, R. J., Appl. Phys. Lett. 77, 3532 (2000).Google Scholar
[13] Reshchikov, M. A., Visconti, P., and Morkoç, H., Appl. Phys. Lett. 78, 177 (2001).Google Scholar
[14] Morkoç, H., Reshchikov, M. A., Jones, K. M., Yun, F., Visconti, P., Nathan, M. I., and Molnar, R. J., Mat. Res. Soc. Symp. Proc. 639, G11.2 (2001).Google Scholar