No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Excitonic resonance energies in a C-plane AlN epilayer on the (0001) sapphire substrate grown by low-pressure metalorganic vapor phase epitaxy were determined as a function of temperature by means of optical reflectance (OR) and cathodoluminescence (CL) measurements. The OR spectra exhibited distinct reflectance anomalies at the photon energies just above the multiple internal reflection fringes, and the spectral lineshape was fitted considering A (???u7v7c) and BC (???9v,???17v7c) exciton transitions. The energies of them at 0 K were obtained to be 6.211 and 6.266 eV, giving the crystal field splitting (Δcr) of approximately 55 meV. The AlNfilm exhibited an excitonic emission even at 300 K, which is due to the small Bohr radius of excitons and large longitudinal optical phonon energies. The Einstein characteristic temperature Q E was estimated to be 580 K.