Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T17:17:58.231Z Has data issue: false hasContentIssue false

Exciton Lifetime in PbS Quantum Dots in Glass

Published online by Cambridge University Press:  26 February 2011

Peter D Persans
Affiliation:
[email protected], rensselaer Polytechnic Institute, Physics, 110 Eighth Street, Troy, NY, 12180, United States, 518-276-2934, 518-276-6680
A. Filin
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Physics, 110 Eighth Street, Troy, NY, 12180, United States
N. E. Berry
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Physics, 110 Eighth Street, Troy, NY, 12180, United States
F. Huang
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Physics, 110 Eighth Street, Troy, NY, 12180, United States
E. Chan
Affiliation:
[email protected], Rensselaer Polytechnic Institute, Physics, 110 Eighth Street, Troy, NY, 12180, United States
Get access

Abstract

We report experimental measurements and analysis of HOMO-LUMO transition photoluminescence and photoinduced bleaching magnitude and decay kinetics in lead sulfide quantum dots in glass. We find that the radiative lifetime is independent of temperature from 77K to 500K. The lifetime of the HOMO-LUMO state decreases dramatically for T>300K, indicating thermally activated nonradiative recombination. The excitation decay time is much greater than the radiative lifetime and increases monotonically with decreasing temperature with decay times of 2 μs at room temperature and 4-10 μs at 77K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huang, F., Filin, A., Doremus, R., Rao, P.N., and Persans, P.D., Long-Lifetime Nonlinear Absorption of Pbs Quantum Dots. Mat. Res. Soc. Symp. Proc., 737, (2003) 163.Google Scholar
2. Schaller, R.D. and Klimov, V.I., High Efficiency Carrier Multiplication in Pbse Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett., 92, (2004) 186601.10.1103/PhysRevLett.92.186601Google Scholar
3. Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, A.I., Nozik, A.J., Shabaev, A., and Efros, A.L., Highly Efficient Multiple Exciton Generation in Colloidal Pbse and Pbs Quantum Dots. Nanoletters, 5, (2005) 865.10.1021/nl0502672Google Scholar
4. Nozik, A.J., Quantum Dot Solar Cells.Physica E-Low-Dimensional Systems &Nanostructures, 14, (2002) 115120.10.1016/S1386-9477(02)00374-0Google Scholar
5. Califano, M., Zunger, A., and Franceschetti, A., Efficient Inverse Auger Recombination at Threshold in Cdse Nanocrystals. Nano Letters, 4, (2004) 525531.10.1021/nl049869wGoogle Scholar
6. Persans, P.D., Filin, A., Huang, F., Vitek, A., Rao, P.G.N., and Doremus, R.H.. Trap Effects in Pbs Quantum Dots. in Quantum Dots, Nanoparticles and Nanowires Symposium, 1–5 Dec. 2003. 2004. Boston, MA, USA: Mater. Res. Soc.Google Scholar
7. Espiau de Lamaestre, R., Bernas, H., Pacifici, D., Franzo, G., and Prioli, F., Evidence for a “Dark Exciton” State of Pbs Nanocrystals in a Silicate Glass. Appl. Phys. Lett., 88, (2006) 181115–2.10.1063/1.2201885Google Scholar
8. Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, A.L., and Rosen, M., Observation of Dark Exciton in Cdse Quantum Dots. Phys. Rev. Lett., 75, (1995) 3728.10.1103/PhysRevLett.75.3728Google Scholar
9. Rao, P.N., Cadmium Sulfide and Lead Sulfide Quantum Dots in Glass: Processing, Growth, and Optical Absorption, in Materials Science, Rensselaer Polytechnic Institute: Troy, (2001).Google Scholar
10. Huang, F., Nonlinear Optical Studies of the Properties of Nanoparticles, in Physics, Rensselaer Polytechnic Institute: Troy, (2003) 122.Google Scholar
11. Huang, F., Filin, A., Doremus, R., Rao, P., and Persans, P.D., Long-Lifetime Nonlinear Absorption of Pbs Quantum Dots. Mat. Res. Soc. Symp. Proc., 737, (2003) 163.Google Scholar