Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T11:00:09.845Z Has data issue: false hasContentIssue false

Exciton Dissociation and Mobility in Conducting Polymers and Oligomers

Published online by Cambridge University Press:  10 February 2011

S. C. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
W. Geens
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
J. Poortmans
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
A. Mehra
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
J. Nijs
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
R. Mertens
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Get access

Abstract

A survey of the literature shows that reverse bias current IL of an illuminated conducting polymer Schottky diode increases with voltage. We suggest that this increase in IL with applied reverse bias is due to a combination of two factors: (1) increase of mobility, and (2) dissociation of excitons. The experimental results agree with the values of IL calculated using either of the two mechanisms. Therefore it is difficult to determine the relative importance of the two mechanisms. The relative importance can be determined only if reliable values of material parameters are available. We have fabricated Schottky diodes and FETs using 5-ring n-octyloxy-substituted oligo[p-phenylene vinylene](Ooct-OPV5) and C60. The mobility of the oligomer derived from the measured characteristics of the diode is 3.29×10−7cm2/Vs and from the FET data, 3.24 × 10−4 cm2/Vs. These results show that the mobility (and other material parameters) depend strongly on the structure of the device. Therefore for interpreting the IL data it is important to measure the material parameters on the same structure on which IL measurements are made.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wei, X., Raikh, M., Vardeny, Z. V., Yang, Y., and Moses, D., Phys. Rev. B 49, 17480 (1994).Google Scholar
[2] Gao, J., Hide, F., and Wang, H., Synthetic Metals 84, 979 (1997).Google Scholar
[3] Moses, D., Okumoto, H., Comoretto, D., Lee, C. H., Heeger, A. J., Ohnishi, T., and Noguchi, T., Synthetic Metals 84, 539 (1997).Google Scholar
[4] Yoshino, K., Tada, K., Fujii, A., Conwell, E. M., and Zakhidov, A., IEEE Trans. Electron Devices 44, 1315 (1997).Google Scholar
[5] Geens, W., Poortmans, J., Jain, S. C., Nijs, J., and Mertens, R., presented at the First European Organic Solar Cell Conference (ECOS98), Cadarache (Aix en Provence), December 3-5, 1998.(to be published in Solar Energy Materials and Solar Cells).Google Scholar
[6] Karg, S., Dyakonov, V., Meier, M., Rieß, W., and Paasch, G., Synthetic Metals 67, 165 (1994).Google Scholar
[7] Kersting, R., Lemmer, U., Deussen, M., Bakker, H. J., Mahrt, R. F., Kurz, H., Arkhipov, V. I., Bässler, H., and Göbel, E. O., Phys. Rev. Lett. 73, 1440 (1994).Google Scholar
[8] Deussen, M., Schielder, M., and Bässler, H., Synthetic Metals 73, 123 (1995).Google Scholar
[9] Sze, S. M., Physics of semiconductor devices, John Wiley N. Y., 1981.Google Scholar
[10] Arkhipov, V. I., Bässler, H., Deussen, M., Göbel, E. O., Kersting, R., Kurz, H., Lemmer, U., and Mahrt, R. F., Phys. Rev. B 52, 4932 (1995).Google Scholar