Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:52:39.392Z Has data issue: false hasContentIssue false

Excitation Intensity and Temperature Dependent Photoluminescence Behavior of Silicon Nanoparticles

Published online by Cambridge University Press:  15 February 2011

E. Werwa
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, [email protected], [email protected], [email protected]
A. A. Seraphin
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, [email protected], [email protected], [email protected]
K. D. Kolenbrander
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, [email protected], [email protected], [email protected]
Get access

Abstract

The luminescence properties of silicon nanoparticles have been studied as a function of the excitation light intensity, the temporal Nature of the excitation source, and of sample temperature. The excitation intensity dependence of the luminescence was found to depend strongly on the temporal Nature of the excitation source. Under high intensity excitation from a pulsed 355 nm source, the photoluminescence (PL) intensity saturates and the peak PL wavelength shifts to the blue at room temperature. This behavior persists at reduced temperature. In contrast, under high intensity excitation using a cw 488 nm source at room temperature, the PL intensity saturates but does not shift in wavelength. At reduced temperatures, there is no saturation of luminescence intensity with high intensity cw excitation. These differences indicate that photogenerated carrier recombination occurs via different pathways depending on the temporal profile of the excitation, with cw excited samples following the expected Auger pathway while pulsed samples exhibit a state filling mechanism. Auger models for the pulsed behavior are found to be inconsistent with the experimental data. The temperature dependence of the PL from a pulsed excited sample for a constant excitation intensity was also monitored. The variation of the peak emission wavelength was found to be similar in magnitude to that observed for amorphous silicon, suggesting that structural disorder may play a role in the luminescence. The change in emission intensity was fairly weak, indicating enhanced carrier confinement, as would be expected in a quantum confined system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T., Appl. Phys. Lett. 57, 10461048 (1990).Google Scholar
2.Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).Google Scholar
3.Fauchet, P.M., Ettedgui, E., Raisanen, A., Brillson, L.J., Seiferth, F., Kurinec, S.K., Gao, Y., Peng, C., and Tsybeskov, L. in Silicon-Based Optoelectronic Materials, edited by Collins, R.T., Tischler, M.A., Abstreiter, G., and Thewalt, M.L. (Mater. Res. Soc. Proc. 298, Pittsburgh, PA, 1993) pp. 271276.Google Scholar
4.Cullis, A.G. and Canham, L.T., Nature 353, 335338 (1991).Google Scholar
5.Werwa, E., Seraphin, A.A., Chiu, L.A., Zhou, C., and Kolenbrander, K.D., Appl. Phys. Lett. 64 1821 (1994).Google Scholar
6.Mihalcescu, I., Vial, J.C., Bsiesy, A., Muller, F., Romestain, R., Martin, E., Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. B 51, 17605 (1995).Google Scholar
7.Koos, M., Pocsik, I., and Vazsonyi, E.B., Appl. Phys. Lett. 62, 1797 (1993).Google Scholar
8.Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J.C., Romestain, R., Muller, F., and Bsiesy, A., Phys. Rev. Lett. 75, 2228 (1995).Google Scholar
9.Schmitt-Rink, S., Miller, D.A.B., and Chemia, D.S., Phys. Rev. B 35, 8113 (1987).Google Scholar
10.Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
11.Fafard, S., Leon, R., Leonard, D., Merz, J.L., and Petroff, P.M., Phys. Rev. B 52, 5752 (1995).Google Scholar
12.Fafard, S., Wasilweski, Z., McCaffrey, J., Raymond, S., and Charbonneau, S., Appl. Phys. Lett. 68, 991 (1996).Google Scholar
13.Hessman, D., Castrillo, P., Pistol, M.-E., Pryor, C., and Samuelson, L., Appl. Phys. Lett. 69, 749 (1996).Google Scholar
14.Sopanen, M., Taskinen, M., Lipsanen, H., and Ahopelto, J., Appl. Phys. Lett. 69, 3393 (1996).Google Scholar
15.Ekimov, A.I., Hache, F., Schanne-Klein, M.C., Richard, D., Flytzanis, C., Kudryavtsev, I.A., Yazeva, T.V., Rodina, A.V., Efros, Al.L., J. Opt. Soc. Am. B 10, 100 (1993).Google Scholar
16.Guha, S., Hendershot, G., Peebles, D., Steiner, P., Kozlowski, F., and Lang, W., Appl. Phys. Lett. 64, 613 (1994).Google Scholar
17.Beattie, A.R. and Landsberg, P.T., Proc. Royal Soc. London 249, 16 (1959).Google Scholar
18.Koyama, H., Ozaki, T., and Koshida, N., Phys. Rev. B 52, R11561 (1995).Google Scholar
19.Kanemitsu, Y., Phys. Rev. B. 49, 16845 (1994).Google Scholar
20.Ookubo, N., Hamada, N., and Sawada, S., Sol. St. Comm. 92, 369 (1994).Google Scholar
21.Nash, K.J., Calcott, P.D.J., Canham, L.T., Kane, M.J., and Brumhead, D., J. Lumin. 60&61, 297 (1994).Google Scholar
22.'t Hooft, G.W., Kessener, Y.A.R.R., Rikken, G.L.J.A., and Venhuizen, A.H.J., Appl. Phys. Lett. 61, 234 (1992).Google Scholar
23.Finkbeiner, S. and Weber, J., Thin Solid Films 255, 254 (1995).Google Scholar
24.Takagahara, T. and Takeda, K., Phys. Rev. B. 46, 15578 (1992).Google Scholar
25.Eychmüller, A., Hasselbarth, A., Katskias, L., and Weiler, H., J. Lumin. 48&49, 745 (1991).Google Scholar
26.Street, R.A., Adv. Phys. 30, 593 (1981).Google Scholar
27.Lockwood, D.J., Lu, Z.H., and Baribeau, J.M., Phys. Rev. Lett. 76, 539 (1996).Google Scholar
28.Kanemitsu, Y., Phys. Rev. B 53, 13515 (1996).Google Scholar