Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T08:14:15.703Z Has data issue: false hasContentIssue false

Excess Thermodynamic Properties of Nanophase Titanium Dioxide Prepared by Chemical and Physical Methods

Published online by Cambridge University Press:  25 February 2011

Chrysanthe D. Terwilliger
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Yet-Ming Chiang
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The excess enthalpy and excess heat capacity of nanophase TiO2 prepared by a chemically-derived process and by inert gas condensation have been measured using differential scanning calorimetry. In comparison to the chemically-derived samples, the excess enthalpy of the inert gas condensed samples is significantly larger, perhaps due to the presence of intragranular planar defects that accomm oate oxygen deficiency. Significant extraneous contributions from planar defects, lattice strain, phase transformation, oxidation, or sintering have been ruled out for the chemically-derived samples. A grain boundary enthalpy of 13-1.6 J/m2 in the temperature range 600-1000°C is obtained from scanning measurements. However, the data also indicate a grain size and/or temperature dependence of the grain boundary enthalpy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birringer, R., Gleiter, H., Klein, H.-P., Marquardt, P., Phys.Lett. 102A, 365 (1984).Google Scholar
2. Zhu, X., R.Birringer, Herr, U., Gleiter, H., Phys.Rev.B 35, 9085 (1987).Google Scholar
3. Herr, U., Jing, J., Birringer, R., Gonser, U., Gleiter, H., Appl.Phys.Lett. 50, 472 (1987).Google Scholar
4. Haubold, T., Birringer, R., Lengeler, B., Gleiter, H., Phys.Lett. 135A, 461 (1989).Google Scholar
5. Fecht, H.J., Heflstern, E., Fu, Z., Johnson, W.L., Met.Trans.A 21, 2333 (1990); Adv.Powder Metall. 2, 111 (1989),.Google Scholar
6. Eckert, J., Holzer, J.C., Krill, C.E. III, Johnson, W.L., J.Mater.Res. 7, 1751 (1992).Google Scholar
7. Tschope, A., Birringer, R., Gleiter, H., J.Appl.Phys. 71, 5391 (1992).Google Scholar
8. Thomas, G.J., Siegel, R.W., Eastman, J.A., Scrpta Metall. 24, 201 (1990).Google Scholar
9. Wunderlich, W., Ishida, Y., Maurer, R., Scripta Metall. 24, 403 (1990).Google Scholar
10. Eastman, J.A. and Thompson, U. in Interfaces Between Polymers, Metals; and Ceramics, edited by DeKoven, B.M., Gellman, A.J., and Rosenberg, R. (Mater. Res. Soc. Proc. 153, Pittsburgh, PA, 1989) pp. 2732.Google Scholar
11. Siegel, R.W. and Thomas, G.J., Ultramicroscopy 40, 376 (1992).Google Scholar
12. Astronm, H.U., Arkiv for Fysik 13, 69 (1957).Google Scholar
13. Hellstern, E., Fecht, H.J., Fu, Z., Johnson, W.L., J.Appl.Phys. 65, 305 (1989).Google Scholar
14. Lu, K., Wei, W.D., Wang, J.T., J.Appl.Phys. 69, 7345(1991).Google Scholar
15. Terwilliger, C.D., Chiang, Y.-M., Eatman, J.A., Liao, Y., in Point Defects and Related Properties of Ceramics, edited by Mason, T.O. and Routbort, J.L. (Ceram.Trans. 24, Westervillle, OH, 1991) pp. 325332.Google Scholar
16. Chiang, Y.-M., Smyth, I.P., Terwilliger, C.D., Petuskey, W.T., Eastman, J.A., Nanostr. Mater. 1, 235 (1992).Google Scholar
17. Terwilliger, C.D. and Chiang, Y.-M., submitted to Nanostr.Mater., Proc. of the First Int. Conf. on Nanostruct. Materials, Cancun, Mexico, September 21-26, 1992.Google Scholar
18. Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., Gronsky, R., J.Mater.Res. 3, 1367 (1988).Google Scholar
19. Mendelson, M.I., J.Am.Ceran.Soc. 52, 443 (1969).Google Scholar
20. Rachinger, W.A., J.Sci.Instrum. 25, 254 (1948).Google Scholar
21. Kiug, H.P. and Alexander, U., X-ray Diffraction Procedures for Polycr'ystalline and Amorphouss Materials, 2nd ed. (John Wiley, New York, 1974), pp. 661665.Google Scholar
22. Chen, L.C. and Spaepen, F., J.Appl.Phys. 69, 679 (1991).Google Scholar
23. Parker, J.C. and Siegel, R.W., Appl.Phys.Lett. 57, 943 (1990).Google Scholar
24. Li, Z., Ramasamy, S., Hahn, H., Siegel, R.W., Mater.Lett. 6, 195 (1988).Google Scholar