Article contents
Evolutionary Growth Development in SiC Sputtered Films
Published online by Cambridge University Press: 21 February 2011
Abstract
The growth of rf-sputtered silicon carbide thin films has been studied over a wide range of substrate temperatures, producing films with crystal structures from completely amorphous to highly crystalline. The initial 100nm of growth is characterized by ‘void network’ type physical structure throughout the temperature regime studied. This network of polyhedra outlines the dominant physical structure features at the top surface of the film and is shown to grow in average lateral dimension (D) with increasing film thickness (t) as a parabola (D=K·tx). The growth exponent (x) describes the lateral growth rate of these parabolic growth cone columns and decreases with increasing film temperature, bombardment, and hydrogen in the plasma. In the highly crystalline films the lateral crystallite growth rate eventually exceeds the growth of void network columns present in 10–100nm films, producing abrubt increases in size of physical features between 100–1000nm levels. The results show that the evolutionary structure zone model consistently accounts for film growth behavior in the amorphous regime but must be modified for crystalline films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1985
References
- 12
- Cited by