Article contents
Evolution of Porosity and Morphology in Alkylene-Bridged Polysilsesquioxane Xerogels as a Function of Gel Aging Time
Published online by Cambridge University Press: 01 February 2011
Abstract
Aging of silica gels before drying is known to result in significant changes in xerogel morphology, porosity and properties. In this study, the influence of aging gels on the porosity and morphology of alkylene-bridged polysilsesquioxane xerogels was examined. Gels of hexylene-, heptylene, octylene, nonylene, and decylene-bridged polysilsesquioxanes were prepared by the sol-gel polymerization of the respective bis(trimethoxysilyl)alkane monomers under acidic or basic conditions in methanol and in tetrahydrofuran. The gels were aged 3, 7, 14, 28, 35, 42, 49, and 56 days before drying to afford xerogels. The xerogels were characterized by nitrogen sorption porosimetry. Xerogels prepared in THF were non-porous. Those prepared and aged under basic conditions in methanol or tetrahydrofuran exhibited coarsening of porosity with aging time. With the exception of the hexylene-bridged gels, those prepared and aged in acidic methanol showed little change with aging. The surface area of the hexylene-bridged xerogels nearly tripled with aging times of up to several weeks, then decreased, for the gels aged for more than two weeks, to around 100 meters squared per gram.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 1
- Cited by