Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:07:42.487Z Has data issue: false hasContentIssue false

Evolution Of Crystalline Microstructure in GeTe Thin Films for Optical Storage Applications

Published online by Cambridge University Press:  15 February 2011

M. Libera*
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
Get access

Abstract

The bit-erase process in phase-change optical storage is based on the amorphous to crystalline transformation. While there has been significant progress developing compositions and multilayered media for phase-change applications, quantitative studies of the crystallization kinetics and microstructural development are generally lacking. This paper describes work quantifying crystallization in GeTe thin films. Microstructural changes during isothermal annealing are measured using in-situ hot-stage optical microscopy. This technique measures the fraction crystallized, the number of crystallites, and crystallite radii as a function of time. These data are sufficient to deconvolute the individual contributions of nucleation and growth. We find an Avrami exponent of ∼4, consistent with time-resolved reflection/transmission studies. This exponent is due to 2-D growth at a constant rate plus transient nucleation. The data are used in a kinetic model to simulate non-isothermal crystallization during focused-laser heating characteristic of the bit-erase process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Libera, M. and Chen, M., MRS Bulletin XV, 4045 (April 1990).CrossRefGoogle Scholar
2. Gravesteijn, D., van der Poel, C.J., Schulte, P., van Uijen, C., Philips Tech. Rev. 44, 250258 (May 1989).Google Scholar
3. Bell, A.E. and Spong, F.W., IEEE J. Quant. Elec. QE–14 (7), 487495 (July 1978).CrossRefGoogle Scholar
4. Kant, R., J. Applied Mechanics 55, 9397 (March 1988).CrossRefGoogle Scholar
5. Bartholomeusz, B.J., SPIE Vol. 1078, 179188 (1989).Google Scholar
6. Chen, M., Rubin, K., and Barton, R., Appl. Phys. Lett. 49 (9), 502504 (1986).CrossRefGoogle Scholar
7. Proceedings of the Joint Symposium on Optical Memory and Optical Data Storage, July 5–9, 1993 (Maui) published as a special edition of the Japanese Journal of Applied Physics.Google Scholar
8. Morimoto, I., Furuya, K., Suzuki, M., and Nakao, M., SPIE Vol. 1663 Optical Data Storage (1992).Google Scholar
9. Yoshida, T., Akahira, N., Ohara, S., Nishiuchi, K., and Ishida, T., Jpn. J. Appl. Phys. 31, 476481 (1992).CrossRefGoogle Scholar
10. Rubin, K., Birnie, D.P., and Chen, M., J. Appl. Phys. 71 (8), 3680 (1992).CrossRefGoogle Scholar
11. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takoa, M., J. Appl. Phys. 69 (5), 28492856 (1 March 1991).CrossRefGoogle Scholar
12. Hanson, M. and Anderko, K., Constitution of Binary Alloys, 2nd ed. (McGraw Hill, New York, 1958).CrossRefGoogle Scholar
13. Libera, M. and Chen, M., J. Appl. Phys. 73 (5), (March 1993).CrossRefGoogle Scholar
14. Christian, J. W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
15. van der Poel, C., J. Mat. Res. 3 (1), 126132 (Jan/Feb 1988).CrossRefGoogle Scholar
16. Barton, R., Davis, C.R., Rubin, K., and Lim, G., Appl. Phys. Lett. 48, 12551257 (1986).CrossRefGoogle Scholar
17. Jiang, F.S., Rhee, J.C., Okuda, M., and Matsushita, T., J. Non-Crys. Solids 95&96, 533538 (1987).CrossRefGoogle Scholar
18. Ueno, F., Jap. J. Appl. Phys. 26, Suppl. 26–4, 55–60 (1987).CrossRefGoogle Scholar
19. Libera, M., Kim, T., Clevenger, L., and Hong, Q., Mater. Res. Soc. Symp. Proc. V280, ed. Atwater, H. et al., 715 (1993).Google Scholar
20. Solis, J., Rubin, K., and Ortiz, C., J. Mat. Res. 5, 190(1990).CrossRefGoogle Scholar
21. Boswell, P.G., Scripta Metall. 11, 701707 (1977).CrossRefGoogle Scholar
22. Kissinger, H.E., Analytical Chemistry 29, 17021706 (1957).CrossRefGoogle Scholar
23. Marseglia, E.A., J. Non-Cryst. Solids 41, 3136 (1980).CrossRefGoogle Scholar
24. Smith, D.A., Tu, K., and Weiss, B., Ultramicr. 30, 9096 (1989)CrossRefGoogle Scholar
25. Smith, D.A., Evans, P., and Koppikar, S., Mater. Res. Soc. Symp. Proc. V321, ed. M. Libera et al., 271282 (1994).Google Scholar
26. Chopra, K. and Bahl, S., J. Appl. Phys. 40, 4171 (1969); J. Appl. Phys. 40, 4940 (1969); J. Appl. Phys. 41, 2196 (1970).CrossRefGoogle Scholar
27. Aznarez, J. and Mendez, J., Thin Solid Films 131, 111 (1985).CrossRefGoogle Scholar
28. Okabe, T. and Nakagawa, M., J. Non-Crys. Sol. 88, 182 (1986).CrossRefGoogle Scholar
29. Lu, Q.M. and Libera, M., submitted to J. Appl. Phys.Google Scholar
30. Image version 1.45, public-domain software (Mac) available from the National Institutes of HealthGoogle Scholar
31. Henderson, D.W., J. Non-Cryst. Solids 30, 301315 (1979).CrossRefGoogle Scholar
32. Greer, A., Acta Metallurgica 30, 171192 (1982).CrossRefGoogle Scholar
33. Svelto, O., Principles of Lasers (Plenum, New York, 1982).CrossRefGoogle Scholar
34. Libera, M., Chen, M., and Rubin, K., Mater. Res. Soc. Symp. Proc. 152, ed. D. Poker and C. Ortiz (1989).CrossRefGoogle Scholar
35. Libera, M., Chen, M., and Rubin, K., J. Mater. Res. 6 (12), 26662676 (1991).CrossRefGoogle Scholar
36. Aziz, M.J., J. Appl. Phys. 53, 11581168 (1982).CrossRefGoogle Scholar