Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T21:59:41.619Z Has data issue: false hasContentIssue false

Evidence of Quantum Motion of Hydrogen on Pd(111) in He-Diffraction data

Published online by Cambridge University Press:  22 February 2011

C-H. Hsu
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
B. E. Larson
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
M. El-Batanouny
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
C. R. Willis
Affiliation:
Department of Physics, Boston University, Boston, MA 02215
K. M. Martini
Affiliation:
Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

We present elastic He-beam scattering data of the Pd(111)/H system. Diffraction intensities were measured as a function of surface temperature in the range 140°K–320°K. Two remarkable features are observed : the first is the presence of C3v symmetry at (1 × 1) saturation coverage (140°K) and its transformation to C6v symmetry at lower coverages (270°K). The second feature is the anomalous attenuation of the specular He beam accompanying this transformation. Taken together these features provide strong evidence of a fundamental change in the surface charge density corrugation. A classical interpretation of the motion of hydrogen either fails to reproduce the measured attenuation or leads to contradictory and unphysical conclusions regarding the H-metal bond length or surface equilibrium. An alternative quantum mechanical interpretation is developed and is shown to provide consistent and satisfactory explanation of the measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cattania, M. G., Penka, V., Behm, R. J., Christmann, K., and Ertl, G., Surf. Sci. 126, 382 (1983).Google Scholar
2. Rieder, K. H., Bauberger, M., and Stocker, W., Phys. Rev. Letts. 51, 1799 (1983).Google Scholar
3. Felter, T. E., Foiles, S. M., Daw, M. S., and Stulen, R. H., Surf. Sci. 171, L379 (1986).CrossRefGoogle Scholar
4. Christmann, K., Ertl, G., and Schober, O., Surf. Sci. 40, 61 (1973).Google Scholar
5. Daw, M. S. and Foiles, S. M., Phys. Rev. B 35, 2128 (1987).Google Scholar
6. Gomer, R., Rep. Prog. Phys. 53, 917 (1990).Google Scholar
7. Felter, T. E., Stulen, R. H., Koszykowski, M. L., Gdowski, G. E., and Garrett, B., J. Vac. Sci. Technol. A 7, 104 (1989).Google Scholar
8. Christmann, K., Behm, R. J., Ertl, G., Van Hove, M. A., and Weinberg, W. H., J. Chem. Phys. 70, 4168 (1979).Google Scholar
9. Puska, M. J. and Nieminen, R. M., Chakraborty, B., Holloway, S., and Nørskov, J. K., Phys. Rev. Letts. 51, 1081 (1983); M. J. Puska and R. M. Nieminen, Surf. Sci.157, 413 (1985).Google Scholar
10. Mate, C. M. and Somorjai, G. A., Phys. Rev. B 34, 7417 (1986).Google Scholar
11. Gerber, R. B., Yinnon, A. T., and Murrell, J. N., Chem. Phys. 31, 1 (1978).CrossRefGoogle Scholar
12. Hinch, B. J., Surf. Sci. 221, 346, (1989).Google Scholar
13. Martini, K. M., Franzen, W., and El-Batanouny, M., Rev. Sci. Instrum. 58, 1027 (1987).Google Scholar
14. Scattering of Thermal Energy Atoms from Disordered surfaces, Springer Tracts in Modern Physics 115, Poelsema, B. and Comsa, G., Sec. 8.1 (Springer, 1989) and references therein.Google Scholar
15. Lee, J., Cowin, J. P., and Wharton, L., Surf. Sci. 130, 1 (1983).Google Scholar
16. Hsu, C-H., Larson, B. E., El-Batanouny, M., Willis, C. R., and Martini, K. M., to be published.Google Scholar