Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T02:51:23.307Z Has data issue: false hasContentIssue false

Evidence for Magnetic Polarons in Hole-Doped Cobalt Perovskites

Published online by Cambridge University Press:  01 February 2011

Andrey Podlesnyak
Affiliation:
[email protected], Oak Ridge National Laboratory, Neutron Scattering Science Division, Oak Ridge, Tennessee, United States
Albert Furrer
Affiliation:
[email protected], ETH Zurich & PSI, Laboratory for Neutron Scattering, Villigen, Switzerland
Thierry Straessle
Affiliation:
[email protected], Paul Scherrer Institute, Villigen, Switzerland
Ekaterina Pomjakushina
Affiliation:
[email protected], Paul Scherrer Institute, Villigen, Switzerland
Kazimierz Conder
Affiliation:
[email protected], Paul Scherrer Institute, Villigen, Switzerland
Daniel Khomskii
Affiliation:
[email protected], University of Cologne, Institute of Physics II, Cologne, Germany
Get access

Abstract

A substitution of La3+ by Sr2+ in LaCoO3 induces holes in the low-spin ground state of the Co ions, which behave like magnetic impurities with a very high spin value (13 μB per hole). In this work, using single-crystal neutron spectroscopy, we prove that the charges introduced by strontium doping do not remain localized at the cobalt sites. Instead, each hole not only creates Co4+ in low-spin state, but it also transforms the six nearest neighboring Co3+ ions to the intermediate-spin state thereby forming a magnetic seven-site (heptamer) polaron. Spin-state polarons behave like magnetic nanoparticles embedded in an insulating nonmagnetic matrix. Therefore, lightly doped La1-xSrxCoO3 is a natural analog to artificial structures composed of ferromagnetic particles in insulating matrices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Goodenough, J. B., J. Phys. Chem. Solids 6, 287 (1958).Google Scholar
2 Noguchi, S., Kawamata, S., Okuda, K., Nojiri, H. and Motokawa, M., Phys. Rev. B 66, 094404 (2002).Google Scholar
3 Ropka, Z. and Radwanski, R. J., Phys. Rev. B 67, 172401 (2003).Google Scholar
4 Haverkort, M. W., Hu, Z., Cezar, J. C., Burnus, T., Hartmann, H., Reuther, M., Zobel, C., Lorenz, T., Tanaka, A., Brookes, N. B., Hsieh, H. H., Lin, H.-J., Chen, C. T. and Tjeng, L. H., Phys. Rev Lett. 97, 176405 (2006).Google Scholar
5 Podlesnyak, A., Streule, S., Mesot, J., Medarde, M.. Pomjakushina, E., Conder, K., Tanaka, A., Haverkort, M. W. and Khomskii, D. I., Phys. Rev Lett. 97, 247208 (2006).Google Scholar
6 Korotin, M. A., Ezhov, S. Yu., Solovyev, I. V., Anisimov, V. I., Khomskii, D. I. and Sawatzky, G. A., Phys. Rev. B 54, 5309 (1996).Google Scholar
7 Yamaguchi, S., Okimoto, Y. and Tokura, Y., Phys. Rev. B 55, R8666 (1997).Google Scholar
8 Zobel, C., Kriener, M., Burns, D., Baier, J., Grüninger, M., Lorenz, T., Reutler, P. and Revcolevschi, A., Phys. Rev. B 66, 020402 (2002).Google Scholar
9 Klie, R. F., Zheng, J. C., Zhu, Y., Varela, M., Wu, J. and Leighton, C., Phys. Rev Lett. 99, 047203 (2007).Google Scholar
10 Phelan, D., Louca, D., Rosenkranz, S., Lee, S.-H., Qiu, Y., Chupas, P. J., Osborn, R., Zheng, H., Mitchell, J. F., Copley, J. R. D., Sarrao, J. L. and Moritomo, Y., Phys. Rev Lett. 96, 027201 (2006).Google Scholar
11 Itoh, M., Sugahara, M., Natori, I. and Motoya, K., J. Phys. Soc. Jpn. 64, 3967 (1995).Google Scholar
12 Senaris-Rodriguez, M. A. and Goodenough, J. B., J. Solid. State Chem. 118, 323 (1995).Google Scholar
13 Wu, J. and Leighton, C., Phys. Rev. B 67, 174408 (2003).Google Scholar
14 He, C., Torija, M. A., Wu, J., Lynn, J. W., Zheng, H., Mitchell, J. F. and Leighton, C., Phys. Rev. B 76, 014401 (2007).Google Scholar
15 Phelan, D., Louca, D., Kamazawa, K., Lee, S.-H., Ancona, S. N., Rosenkranz, S., Motome, Y., Hundley, M. F., Mitchell, J. F. and Moritomo, Y., Phys. Rev Lett. 97, 235501 (2006).Google Scholar
16 Giblin, S. R., Terry, I., Prabhakaran, D., Boothroyd, A. T., Wu, J. and Leighton, C., Phys. Rev. B 74, 104411 (2006).Google Scholar
17 Giblin, S. R., Prabhakaran, D., Boothroyd, A. T. and Leighton, C., Phys. Rev. B 79, 174410 (2009).Google Scholar
18 Kuhns, P. L., Hoch, M. J. R., Moulton, W. G., Reyes, A. P., Wu, J. and Leighton, C., Phys. Rev Lett. 91, 127202 (2003).Google Scholar
19 Hoch, M. J. R., Kuhns, P. L., Moulton, W. G., Reyes, A. P., Wu, J. and Leighton, C., Phys. Rev. B 69, 014425 (2004).Google Scholar
20 Caciuffo, R., Rinaldi, D., Barucca, G., Mira, J., Rivas, J., Señarís-Rodríguez, M. A., Radaelli, P. G., Fiorani, D. and Goodenough, J. B., Phys. Rev. B 59, 1068 (1999).Google Scholar
21 Yamaguchi, S., Okimoto, Y., Taniguchi, H. and Tokura, Y., Phys. Rev. B 53, R2926 (1996).Google Scholar
22 Louca, D. and Sarrao, J.L., Phys. Rev Lett. 91, 155501 (2003).Google Scholar
23 Dagotto, E., Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds (Springer-Verlag, Berlin, 2003).Google Scholar
24 Kugel, K. I., Rakhmanov, A. L., Sboychakov, A. O. and Khomskii, D. I., Phys. Rev. B 78, 155113 (2008).Google Scholar
25 Sboychakov, A. O., Kugel, K. I., Rakhmanov, A. L. and Khomskii, D. I., Phys. Rev. B 80, 024423 (2009).Google Scholar
26 Podlesnyak, A., Russina, M., Furrer, A., Alfonsov, A., Vavilova, E., Kataev, V., Büchner, B., Strässle, Th., Pomjakushina, E., Conder, K. and Khomskii, D. I., Phys. Rev. Lett., 101, 247603 (2008).Google Scholar
27http://www.ncnr.nist.gov/daveGoogle Scholar