Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T07:29:10.958Z Has data issue: false hasContentIssue false

Evaluation of electron overflow in nitride-based LEDs influenced by polarization charges at electron blocking layers

Published online by Cambridge University Press:  11 February 2015

K. Hayashi
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
T. Yasuda
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
S. Katsuno
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
T. Takeuchi
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
S. Kamiyama
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
M. Iwaya
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
I. Akasaki
Affiliation:
Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan Akasaki Research Center, Nagoya University, Nagoya, 464-8062, Japan
Get access

Abstract

We have investigated an influence of positive polarization charges generated at an interface between GaN barrier/p-AlGaN EB (Electron Blocking) layer in a blue-LED. Simulation results suggested that such polarization charges caused an electron overflow from QWs. The simulation results also indicated that sufficient acceptor doping at the interface could neutralize the positive polarization charges and suppress the electron overflow. We then demonstrated the electron overflow caused by the positive polarization charges and its suppression with sufficient Mg doping at the interface by monitoring emissions from an additional second QW inserted between the p-EB layer and the p-GaN layer. Finally we conclude that the contribution of the electron overflow is not significant for the efficiency droop in blue-LEDs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mukai, T., Yamada, M., Nakamura, S. Jpn J. Appl. Phys 38, 39763981 (1999)CrossRefGoogle Scholar
Piprek, J. Phys. Status Solidi A, 19 (2010)Google Scholar
Kim, M., Schubert, M. F., Dai, Q., Kim, J. K., Shubert, E. F., Piprek, J., Park Appl, Y.. Phys. Lett. 91 183507 (2007)Google Scholar
Schubert, M. F., Xu, J., Kim, J. K., Schubert, E. F., Kim, M. H., Yoon, S., Lee, S. M., Sone, C., Sakong, T., and Park, Y., Appl. Phys. Lett. 93, 041102 (2008)CrossRefGoogle Scholar
Shen, Y. C., Mueller, G. O., Watanabe, S., Gardner, N. F., Munkholm, A., Krames, M. R. 91, 141101 (2007)CrossRefGoogle Scholar
Iveland, J., Martinelli, L., Peretti, J., Speck, J. S., Weisbuch, C. Physical review letters, 110, 177406 (2013)CrossRefGoogle Scholar
Vampola, Kenneth J., Iza, Michael, Keller, Stacia, DenBaars, Steven P., Nakamura, Shuji Appl. Phys. Lett. 94, 061116 (2009)CrossRefGoogle Scholar
Chang, L-B., Lai, M-J., Lin, R-M., Huang, C-H., Applied Physics Express 4 012106 (2011)CrossRefGoogle Scholar
Akyol, F., Nath, D. N., Krishnamoorthy, S., Park, P. S., Rajan, S. Appl. Phys. Lett. 100, 111118 (2012)CrossRefGoogle Scholar
Han, S-H., Lee, D-Y., Lee, S-J., Cho, C-Y., Kwon, M-K., Lee, S. P., Noh, D. Y., Kim, D-J., Kim, Y-C., and Park, S-J., Appl. Phys. Lett. 94, 231123 (2009)CrossRefGoogle Scholar
Yasuda, T., Hayashi, K., Katsuno, S., Takeuchi, T., Kamiyama, S., Iwaya, M., Akasaki, I., H. Amano to be published in Phys. Status Solidi A Google Scholar