Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:02:18.206Z Has data issue: false hasContentIssue false

Evaluating Mechanical Properties of Thin Layers using Nanoindentation and Finite-Element Modeling: Implanted Metals and Deposited Layers

Published online by Cambridge University Press:  03 September 2012

J. A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. C. Barbour
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
S. M. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. W. Ager
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
O. R. Monteiro
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
I. G. Brown
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

We present a methodology based on finite-element modeling of nanoindentation data to extract reliable and accurate mechanical properties from thin, hard films and surface-modified layers on softer substrates. The method deduces the yield stress, Young's modulus, and hardness from indentations as deep as 50% of the layer thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. ABAQUS version 5.5, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI.Google Scholar
2. Knapp, J. A., Follstaedt, D. M., and Myers, S. M., J. Appl. Phys. 79 (1996) 1116.Google Scholar
3. Knapp, J. A. and Follstaedt, D. M., Mat. Res. Soc. Symp. Proc. 397 (1996) in press.Google Scholar
4. Knapp, J. A., Follstaedt, D. M., Barbour, J. C. and Myers, S. M., Proc. of the 1996 Int. Ion Beam Modification of Materials conference, in press.Google Scholar
5. All of the nanoindentation tests were performed at Nano Instruments, Inc., Knoxville, TN.Google Scholar
6. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7 (1992) 1564.Google Scholar
7. Follstaedt, D. M., Nucl. Instrum. Methods B10–11, (1985) 549.Google Scholar
8. Mechanical Behavior of Materials, eds. McClintock, F. A. and Argon, A. S. (Addison-Wesley, Reading, MA, 1966) pp. 276279.Google Scholar
9. Myers, S. M., Follstaedt, D. M., Knapp, J. A. and Christenson, T. R., Mat. Res. Soc. Symp. Proc. 444 (1997) in press.Google Scholar
10. Niebuhr, J., Gerber, R., Schaller, A. and Müller, H.-W., Physical Data of Amorphous Metals, Par B (Fachinformationszentrum Karlsruhe, Germany, 1991).Google Scholar
11. Inoue, A., Iwadachi, T., Minemura, T. and Masumoto, T., Trans. Jap. Inst. Metals 22 (1981) 197.Google Scholar
12. McKenzie, D. R., Muller, D. and Pailthorpe, B. A., Phys. Rev. Lett. 67, (1991) 773.Google Scholar
13. Anders, S., Anders, A., Ager, J. W. III, Wang, Z., Pharr, G. M., Tsui, T. Y., Brown, I. G. and Bhatia, C. S., Mat. Res. Soc. Symp. 383 (1995) 453.Google Scholar
14. Anders, S., Anders, A., Brown, I. G., Wei, B., Komvopoulos, K., Ager, J. W. III, Yu, K. M., Surf. Coatings Technol. 68/69 (1994) 388.Google Scholar
15. Pharr, G. M., Tsui, T. Y., Bolshakov, A. and Oliver, W. C., Mat. Res. Soc. Symp. Proc. 338 (1994) 127.Google Scholar
16. Brookes, C. A. in The Properties of Natural and Synthetic Diamond, edited by Field, J. E. (Academic, New York, 1992) pp. 515546.Google Scholar
17. Robertson, J., Phys. Rev. Lett. 68 (1992) 220.Google Scholar
18. TRIM computer code, Ziegler, J. F., IBM Research Center, Yorktown Heights, New York; See also, J. F. Ziegler, J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, vol.1 (Pergamon, New York, 1985).Google Scholar
19. Follstaedt, D. M., Knapp, J. A., Barbour, J. C., Myers, S. M. and Dugger, M. T., Mat. Res. Soc. Symp. Proc. 457 (1997) in press.Google Scholar