Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:42:38.708Z Has data issue: false hasContentIssue false

Eukaryotic Signal Transduction Pathways And Man-Made Systems Compared

Published online by Cambridge University Press:  21 February 2011

Hagan Bayley*
Affiliation:
Worcester Foundation for Experimental Biology. 222 Maple Avenue, Shrewsbury, MA 01545
Get access

Abstract

The components of biological signal transduction pathways have been compared with those of electronic circuits. Indeed, attempts are being made to incorporate biomolecules into electronic devices. However, man-made biomolecular devices do not yet mimic several important features of naturally occurring systems, especially those of eukaryotes. It is well known that the polypeptide components of biological signal transduction pathways include subunits of receptors, regulatory proteins, enzymes and channels. It is less well appreciated that each component often exists in many functionally related but not redundant forms. When proteins are hetero-oligomers, numerous combinations of these forms may be permitted yielding large arrays of signal transduction molecules with overlapping properties. Further, the organization of these molecules within the cell Is highly complex. Especially alien to the materials scientist are the findings that signal transductlon proteins can translocate between regions of cells in response to stimuli and change in concentration as a consequence of breakdown and resynthesis. These features, as well as the interactions between signal transduction pathways, produce far more complex and fluid signalling networks than those presently used in man-made devices. Is anything to be gained by mimicking such complexity or are we on the right track in designing relatively simple, structurally rigid devices using biomolecular components?

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adams, S.R., Harootunian, A.T., Buechler, Y.T., Taylor, S.S. and Tsien, R.Y., Nature 349. 694 (1991).Google Scholar
2. Arai, K., Lee, F., Miyajima, A., Miyatake, S., Aria, N. and Yokota, T., Ann. Rev. Biochem. 59,783 (1990).Google Scholar
3. Bayley, H., Krishnasastry, M., Walker, B. and Kasianowicz, J., MRS Symp. Proc. 255, this volume (1992).Google Scholar
4. Bentley, J.K., Khatra, A.S. and Garbers, D.L., J. Biol. Chem. 262, 15708 (1987).Google Scholar
5. Bergold, P.J., Beushausen, S.A., Sacktor, T.C., Cheley, S., Bayley, H. and Schwartz, J.H., Neuron 8,387397 (1992).CrossRefGoogle Scholar
6. Beushausen, S., Bergold, P., Sturner, S., Elste, A., Roytenberg, V., Schwartz, J.H. and Bayley, H., Neuron 1, 853 (1988).CrossRefGoogle Scholar
7. Beushausen, S., Lee, E., Walker, B. and Bayley, H., Proc. Nati. Acad. Sci. USA 89, 16411645 (1992).Google Scholar
8. Braha, O., Dale, N., Hochner, B., Klein, M., Abrams, T.W. and Kandel, E. R., Proc. Natl. Acad. Sci. USA 87,2040 (1990).Google Scholar
9. Buxbaum, J.D. and Dudai, Y., J. Biol. Chem. 264.9344 (1989).CrossRefGoogle Scholar
10. Cadd, G.G., Uhler, M.D. and McKnight, G.S., J. Biol. Chem. 265, 19502 (1990).Google Scholar
11. Cheley, S. and Bayley, H., Biochemistry 30, 10246 (1991).Google Scholar
12. Dash, P.K., Hochner, B. and Kandel, E.R., Nature 345, 718 (1990).CrossRefGoogle Scholar
13. Eppler, C.M., Bayley, H., Greenberg, S.M. and Schwartz, J.H., J. Cell Biol. 102,320 (1986).CrossRefGoogle Scholar
14. Fisher, J.A. and Rau, B.R., Science 253, 1233 (1991).Google Scholar
15. Glonzman, D.L., Kandel, E.R. and Schacher, S., Science 249,799 (1990).Google Scholar
16. Greenberg, S.M., Castellucci, V.F., Bayley, H. and Schwartz, J.H., Nature 329,62 (1987).CrossRefGoogle Scholar
17. Greenough, W.T. and Bailey, C.H., Trends Neurosci. 11, 142 (1988).CrossRefGoogle Scholar
18. Gust, D. and Moore, T.A., Science 244, 35 (1989).CrossRefGoogle Scholar
19. Hong, F.T.. Molecular electronics: biosensors and biocomputers. New York:Plenum (1989).CrossRefGoogle Scholar
20. Hunter, T., Cell 50, 823 (1987).Google Scholar
21. Hunter, T., Cell 64, 249 (1991).Google Scholar
22. Kandel, E.R. and Schwartz, J.H., Science 218.433 (1982).CrossRefGoogle Scholar
23. Knighton, D.R., Zheng, J., Eyck, L.F. Ten, Xuong, N.-H., Taylor, S.S. and Sowadskl, J.M., Science 253,407 (1991).Google Scholar
24. Knowles, J.R., Science 236, 1252 (1987).Google Scholar
25. Lerner, R.A., Benkovic, S.J. and Schultz, P.G., Science 252, 659 (1991).CrossRefGoogle Scholar
26. Meinkoth, J.L., Ji, Y., Taylor, S.S. and Feramisco, J.R., Proc. Nati. Acad. Sci. USA 87. 9595 (1990).CrossRefGoogle Scholar
27. Nathans, J., Thomas, D. and Hogness, D., Science 232, 193 (1986).Google Scholar
28. Nicola, N.A. and Metcalf, D., Cell 67, 1(1991).CrossRefGoogle Scholar
29. Nigg, E.A., Hitz, H., Eppenberger, H.M. and Dutly, F., EMBO J. 4,2801 (1985).Google Scholar
30. Obar, R., Dingus, J., Bayley, H. and Vallee, R., Neuron 3,639 (1989).Google Scholar
31. Palazzolo, M., Katz., F. Kennedy, T.E. and Schwartz, J.H., J. Neurobiol. 20, 746 (1989).CrossRefGoogle Scholar
32. Pattanaik, A., Gowda, D.C. and Urry, D.W., Biochem. Biophys. Res. Commun. 178,539 (1991).Google Scholar
33. Planos, A. and Kirsch, J.F., Biochemistry 30, 8268 (1991).Google Scholar
34. Podesta, E.J., Solano, A.R. and Lemos, J.R., J. Mol. Endocrinol. 6, 269 (1991).Google Scholar
35. Ross, E.M., Neuron 3, 141 (1989).Google Scholar
36. Rubino, H.M., Dammerman, M., Shafit-Zagardo, B. and Erlichman, J., Neuron 3, 631 (1989).CrossRefGoogle Scholar
37. Schofield, P.R., Shivers, B.D. and Seeburg, P.H., Trends Neurosci. 13, 8 (1990).Google Scholar
38. Schwartz, J.H. and Greenberg, S.M., Ann. Rev. Neurosci. 10, 459 (1987).Google Scholar
39. Sejnowski, T.J., Koch, C. and Churchland, P.S., Science 241, 1299 (1988).Google Scholar
40. Shepherd, G.M., Cell 67,845 (1991).CrossRefGoogle Scholar
41. Stinson, S.C., Chem. Eng. News July 16th, 26 (1990).Google Scholar
42. Struhl, K., Neuron 7, 177 (1991).Google Scholar
43. Tirrell, D.A., Fournier, M.J. and Mason, T.L., MRS Bull. XVI(7), 23 (1991).Google Scholar
44. Whitesides, G.M., Mathias, J.P. and Seto, C.T., Science 254,. 1312 (1991).CrossRefGoogle Scholar
45. Wu, Z.-P. and Hilvert, D., J. Am. Chem. Soc. 112,5647 (1990).CrossRefGoogle Scholar