Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T13:25:53.748Z Has data issue: false hasContentIssue false

Estimation of Minimum Liquidus Free Energy Concentration for Silicide and Germanide Systems

Published online by Cambridge University Press:  10 February 2011

H. G. Nam
Affiliation:
Department of Electronic Engineering, Sun Moon University, Asan-si, Choongnam, 336-840, Korea
N.-I. Cho
Affiliation:
Department of Electronic Engineering, Sun Moon University, Asan-si, Choongnam, 336-840, Korea
Get access

Abstract

Thermodynamic functions of Co-Si and Au-Si systems were studied. The validity of these functions were confirmed by successfully calculating phase diagrams. It was revealed that the composition of the first nucleated compound is close to the concentration of the minimum free energy of the liquid alloy with respect to the two solid components (ΔG) of the binary systems. In addition, the minimum ΔG concentration was found to be located by interpolating the portion of the liquidus, where the liquid alloy is in equilibrium with the two solid constituents, into the central region of the diagram where compounds exist. The minimum ΔG concentration of other silicide and germanide systems were estimated by the suggested interpolation method. A new model for predicting the first nucleated compound in silicide as well as germanide systems was proposed based on the findings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pretorius, R., Thin Films and Interface II, Mat. Res. Soc. Symp. Proc. 25, 15 (1984)Google Scholar
2. Ronay, M., Appl. Phys. Lett. 42 (7), 577 (1983)Google Scholar
3. Walser, R. M. and Bene, R. W., Appl. Phys. Lett. 28 (10), 624 (1976)Google Scholar
4. Gosele, U. and Tu, K. N., J. Appl. Phys. 66 (6), 2619 (1989)Google Scholar
5. d'Heurle, F. M., J. Mater. Res. 3 (1), 167 (1988)Google Scholar
6. Bene, R. W., J. Appl. Phys. 61 (5), 1826 (1987)Google Scholar
7. Cho, N.-I. and Nam, H. G., Mat. Res. Soc. Symp. Proc. 311, 347 (1993)Google Scholar
8. Nam, H. G., Chung, I.-S., and Bene, R. W., J. Appl. Phys. 71 (11), 5460 (1992)Google Scholar
9. Wang, M. H. and Chen, L. J., Appl. Phys. Lett. 58 (5), 463 (1991)Google Scholar
10. Castanet, R., Chastel, R., and Bergman, C., J. Chem. Thermodynamics 15, 773 (1983)Google Scholar
11. Saunder, N. and Miodownik, A. P., Ber. Bunsenges. Phys. Chem. 87, 830 (1983)Google Scholar
12. Arpshofen, I., Pool, M. J., Gerling, U., Sommer, F., Schultheib, E., and Predel, B., Metallkde, Z.. 72, 776 (1981)Google Scholar
13. Bergman, C., Chastel, R., Gilbert, M., Castanet, R., and Mathieu, J. C., Journal de Physique, Colloque C8, supplement au no8, 41, C8591 (1980)Google Scholar
14. Castanet, R., Chastel, R., and Bergman, C., Mat. Sci. Engr. 32, 93 (1978)Google Scholar
15. Vatolin, N. A., Kozlov, Yu, S., and Esin, Yu. O., Russian Metallurgy 3, 107 (1974)Google Scholar
16. Schwerdtfeger, K. and Engell, H. J., Trans. Met. Soc. AIME 233, 1327 (1965)Google Scholar
17. Schwerdtfeger, K. and Engell, H. J., Arch. Eisenhuettenew. 35, 533 (1964)Google Scholar
18. Kalishevich, G. I., Gel'd, P. V., and Krentsis, R. P., High Temp. 2, 11 (1964)Google Scholar
19. Kalishevich, G. I., Gel'd, P. V., and Krentsis, R. P., High Temp. 6, 959 (1968)Google Scholar
20. Pasturel, A., Hicter, P., Mayou, D., and Cyrot-Lackmann, F., Scripta Metallurgica 17, 841 (1983)Google Scholar
21. Petrushevskiy, M. S. and Gel'd, P. V., Russian Metallurgy 4, 50 (1973)Google Scholar
22. Chart, T. G., High Temp.-High Press. 5, 241 (1973)Google Scholar
23. Nam, H. G. and Cho, N.-I., submitted for publication in J. Mat. Sci.Google Scholar
24. Nam, H. G., Chung, I.-S., and Bene, R. W., Thin Solid Films 227, 153 (1992)Google Scholar
25. Nam, H. G. and Cho, N.-I., Mat. Res. Soc. Symp. Proc. 402, 15 (1995)Google Scholar
26. Moffat, W. G., The Handbook of Binary Phase Diagrams, General Electric, New YorkGoogle Scholar
27. Shunk, F. A., Constitution of Binary Alloys, 2nd supplement, McGraw-Hill, New York, 1969 Google Scholar
28. Hansen, M., Constitution of Binary Alloys, McGraw-Hill, New York, 1958 Google Scholar
29. Oya, Y. and Suzuki, T., Metallkde, Z.. 74, 21 (1983)Google Scholar
30. Elliot, R. P., Constitution of Binary Alloys, 1st supplement, McGraw-Hill, New York, 1965 Google Scholar
31. Langer, H. and Wachtel, E., Metallkde, Z.. 74, 535 (1983)Google Scholar