Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:09:37.907Z Has data issue: false hasContentIssue false

The Essence and Efficiency Limits of Bulk-Heterostructure Organic Solar Cells

Published online by Cambridge University Press:  19 April 2012

M. Alam*
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906
B. Ray
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906
M. Khan
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906
S. Dongaonkar
Affiliation:
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906
Get access

Abstract:

Since its introduction in early 1990s, bulk-heterojunction organic photovoltaic solar cell (BHJ-OPV) has promised high-efficiency at ultra-low cost and weight, with potential for non-traditional applications such as building-integrated PV. There is a widespread presumption, however, that the complexity of morphology makes carrier transport in OPV irreducibly complicated, and possibly, beyond predictive modeling. In this paper, we use elementary and intuitive arguments to derive the fundamental thermodynamic as well as morphology-specific practical limits of BHJ-OPV efficiency. We find that constraints of the percolation threshold and trade-off among short-circuit current, open circuit voltage, and fill factor make substantial improvement in OPV efficiency difficult. We posit that future improvement in OPV will rely not on morphology engineering, or reducing the polymer bandgap, but on increasing both the effective μ × τ product and the cross-gap between donor/acceptors. Even if the OPV fails to achieve the highest efficiency anticipated by the thermodynamic limit, its novel form factor, lightweight, and transparency can make it a commercially viable option for many applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krebs, F. C., J Mater Chem, 19(30), 5442 (2009).Google Scholar
2. Nelson, J., Materials Today 14 (10) 470 (2011).Google Scholar
3. Forrest, S. R., MRS Bull. 30(1) 2832, Jan, (2005).Google Scholar
4. Onsager, L., Physical Rev. 54 (8) 554557 (1938).Google Scholar
5. Shockley, W. and Queisser, , J. Appl. Phys., 32, 510 (1961)Google Scholar
6. De Vos, Alexis, Thermodynamics of Solar Energy Conversion (Wiley-VCH, ISBN 978-3-527-40841-2, 2008).Google Scholar
7. Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R., and Forrest, S.R., Phys Rev B 83 195326 (2011).Google Scholar
8. Khan, R. and Alam, M., Unpublished results (2011).Google Scholar
9. Yu, G. et al. ., Science, 270 (5243) 1789 (1995). J.J. M. Halls 376 (6540) 498(1995).Google Scholar
10. Peumans, P., Uchida, S., and Forrest, S., Nature, 425 6954, 158162 (2003).Google Scholar
11. Ray, B., Nair, P. R., García, R. E., Alam, M.A., in Proc. International Electron Devices Meeting (2009).Google Scholar
12. Ray, B., Nair, P. R., and Alam, M. A., Solar Energy Materials and Solar Cells 95 32873294 (2011).Google Scholar
13. Ray, B., Lundstrom, M. S., and Alam, M. A., Applied Physics Letters (2012).Google Scholar
14. Ray, B., and Alam, M. A., Solar Energy Materials and Solar Cells (2012).Google Scholar
15. Ray, B. and Alam, M.A., Appl. Phys. Lett. 99 033303 (2011)Google Scholar
16. Alam, M. A., “Nanostructured Electronic Devices: Percolation and Reliability, Online lecture series: https://nanohub.org/resources/7168,” (2009).Google Scholar
17. Pierret, R. F., Semiconductor Device Fundamentals (New York: Addison-Wesley, 1996).Google Scholar
18. Bhattacharya, P., Semiconductor optoelectronic devices (2nd ed., Upper Saddle River, N.J.: Prentice Hall, 1997).Google Scholar
19. Green, M., Solar Energy, vol. 74(3), 181192, (2003).Google Scholar
20. Park, S., Roy, A., Beaupre, S. et al. ., Nature Photonics, 3(5), 297, (2009).Google Scholar
21. Hoppe, H., and Sariciftci, N., J. of Mat. Chem., 16(1) 4561 (2006).Google Scholar
22. Balluffi, R. W., Allen, S. M., Carter, W. C. et al. ., Kinetics of materials (Hoboken, N.J.:Wiley-Interscience, 2005).Google Scholar
23. Klein, W., Phys. Rev. Lett, 65(12), 14621465 (1990).Google Scholar
24. Lifshitz, I., and Slyozov, V., J. of Physics and Chemistry of Solids, 19 35 (1961).Google Scholar
25. Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D., and Blom, P. W. M., Phys. Rev. B, 72(8), 085205 (2005).Google Scholar
26. Zhu, X. and Kahn, A., MRS Bulletin, 35(6) 443448 (2010).Google Scholar
27. Giebink, N. C., Wiederrecht, G. P., Wasielewski, M. R., and Forrest, S. R., Phys. Rev. B 82, 155305 (2010).Google Scholar
28. Monestier, F., Simon, J., Torchio, P., Escoubas, L., Flory, F., Bailly, S., de Bettig-nies, R., Guillerez, S., and Defranoux, C., Solar Energy Mater. and Solar Cells 91, 405 (2007).Google Scholar
29. Uhrich, C., Wynands, D., Olthof, S., Riede, M. K., Leo, K., Sonntag, S., Maennig, B., and Pfeiffer, M., Journal of Applied Physics, 104(4), 043107–6 (2008).Google Scholar
30. Ayzner, A. L., Tassone, C. J., Tolbert, S. H., and Schwartz, B. J., The Journal of Physical Chemistry C 113 20050 (2009).Google Scholar
31. Ferenczi, T. A. M., Nelson, J., Belton, C., Ballantyne, A. M., Campoy-Quiles, M., Braun, F. M., and Bradley, D. D. C., J. of Physics: Condensed Matter 20 (47) 475203 (2008).Google Scholar
32. Rand, B. P., Burk, D. P., and Forrest, S. R., Phys. Rev. B 75 115327 (2007).Google Scholar
33. Gupta, D., Mukhopadhyay, S., and Narayan, K., Solar Energy Mat. and Solar Cells 94 1309 (2010).Google Scholar
34. Mayer, A.C., Toney, M.F., Scully, S.R., Rivnay, J., Brabec, C.J., Scharber, M., Koppe, M., Heeney, M., McCulloch, I., and McGehee, M.D., Adv. Func. Mat. 1173 (2009)Google Scholar
35. Park, S. H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K., and Heeger, A. J., Nat. Photon. 3 297 (2009).Google Scholar
36. Honda, S., Ohkita, H., Benten, H., and Ito, S., Adv. Energy Mat. 1 588 (2011).Google Scholar
37. Green, M., Prog. in Photovoltaics (2011).Google Scholar
38. Zhang, G., Li, W., Chu, B., Chen, L., Yan, F., Zhu, J., Chen, Y., and Lee, C. S., Appl. Phys. Lett. 94143302-3 (2009).Google Scholar
39. Tada, A., Geng, Y., Wei, Q., Hashimoto, K., and Tajima, K., Nat Mater, 10, 450-455 (2011).Google Scholar
40. McGehee, M. D., MRS Bulletin, 34(2) 95100 (2009).Google Scholar
41. Gorodetsky, A. A., Chiu, C., Schiros, T., Palma, M., Cox, M., Jia, Z., Sat-tler, W., Kymissis, I., Steigerwald, M., and Nuckolls, C., Angewandte Chemie International Edition, 49(43) 79097912 (2010).Google Scholar
42. Li, L., Hu, W., Fuchs, H., and Chi, L., Advanced Energy Materials, 1(2), 188193(2011).Google Scholar