Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:20:06.734Z Has data issue: false hasContentIssue false

Erbium Tris(Amide) Compounds as Source Molecules FOR Rare Earth Doping of Semiconducting Materials

Published online by Cambridge University Press:  10 February 2011

Oliver Just
Affiliation:
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, and Molecular Design Institute, Atlanta, GA 30332–0400
Anton C. Greenwald
Affiliation:
Spire Corporation, One Patriot Park, Bedford, MA 01730–2396
William S. Rees Jr.
Affiliation:
Georgia Institute of Technology, School of Chemistry and Biochemistry, School of Materials Science and Engineering, and Molecular Design Institute, Atlanta, GA 30332–0400
Get access

Abstract

The homoleptic compound erbium{tris[bis (trimethylsilyl)]amide} displays high doping ability for incorporation of the rare earth element into epitaxially grown semiconducting host materials for fabrication of temperature-independent, monochromatic solid state optoelectronic devices. Electronic characteristics derived from erbium doped semiconducting films have been obtained. Several more volatile and lower melting representatives of this class of compounds have been synthesized, characterized by various analytical techniques and examined for their suitability to incorporate optically-active erbium centers into a semiconducting environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
2. Pomrenke, G., Ennen, H. and Haydl, W., J. Appl. Phys. 59, 601 (1986).Google Scholar
3. Ennen, H., Wagner, J., Müller, H.D. and Smith, R.S., J. Appl. Phys. 61, 4877 (1987).Google Scholar
4. Uwai, K., Nakagome, H. and Takahei, K., J. Crystal Growth 93, 583 (1988).Google Scholar
5. Galtier, P., Pocholle, J.P., Charasse, M.N., Cremoux, B. de, Hirtz, J.P., Groussin, B., Benyattou, T. and Guillot, G., Appl. Phys. Lett. 55, 2105 (1989).Google Scholar
6. Nakata, J., Taniguchi, M. and Takahei, K., Appl. Phys. Lett. 61, 2666 (1992).Google Scholar
7. Zheng, B., Michel, J., Ren, F.Y.G., Kimerling, L.C., Jacobson, D.C. and Poate, J.M., Appl. Phys. Lett. 64, 2842 (1994).Google Scholar
8. Rees, W.S. Jr., Anderson, T.J., Green, D.M., Bretschneider, E., in Wide Band-Gap Semiconductors, edited by Moustakas, T.M., Pankove, J.I., Hamakawa, Y. (Mater. Res. Soc. Proc. 242, Pittsburgh, PA, 1992) pp. 281286.Google Scholar
9. Rees, W.S. Jr., Green, D.M., Anderson, T.J., Bretschneider, E., Pathangey, B., Kim, J., J. Electronic Materials 21, 361 (1992).Google Scholar
10. Rees, W.S. Jr., Green, D.M., Hesse, W., Anderson, T.J., Pathangey, B. in Chemical Perspectives of Microelectronic Materials, edited by Abernathy, C. R. et al. (Mat. Res. Soc. Proc. 282, Pittsburgh, PA, 1992) pp. 6367.Google Scholar
11. Rees, W.S. Jr., Green, D.M. and Hesse, W., Polyhedron, 11, 1667 (1992).Google Scholar
12. Rees, W.S. Jr., and Just, O., in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by Mountziaris, T.J., G.R., Paz-Pujalt, Smith, F.T.J. and Westmoreland, P.R. (Mater. Res. Soc. Proc. 334, Boston, MA, 1993) pp. 219224.Google Scholar
13. Uwai, K., Nakagome, H. and Takahei, K., Appl. Phys. Lett. 51, 1010 (1987).Google Scholar
14. Weber, J., Moser, M., Stapor, A., Scholz, F., Bohnert, G., Hangleiter, A., Hammel, A., Wiedmann, D. and Weidlein, J., J. Crystal Growth 104, 815 (1990).Google Scholar
15. Neuhalfen, A.J. and Wessels, B.W., Appl. Phys. Lett. 59, 2317 (1991).Google Scholar
16. Scholz, F., Weber, J., Pressel, K. and Dörnen, A., in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B. and Langer, D.W. (Mater. Res. Soc. Proc. 301, Pittsburgh, PA, 1993) pp. 313.Google Scholar
17. Langer, D.W., Li, Y., Fang, X.M. and Coon, V., in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B. and Langer, D.W. (Mater. Res. Soc. Proc. 301, Pittsburgh, PA, 1993) pp. 1520.Google Scholar
18. Greenwald, A.C., Rees, W.S., Jr. and Lay, U.W., in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B. and Langer, D.W. (Mater. Res. Soc. Proc. 301, Pittsburgh, PA, 1993) pp. 2126.Google Scholar
19. Rees, W.S. Jr., Lay, U.W. and Greenwald, A.C., in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by Mountziaris, T.J., Paz-Pujalt, G.R., Smith, F.T.J. and Westmoreland, P.R. (Mater. Res. Soc. Proc. 334, Boston, MA, 1993) pp. 207212.Google Scholar
20. Schumann, H., Weimann, R., Rees, W.S. Jr,. and Just, O., Angew. Chem. (accepted for publication).Google Scholar