Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T11:47:56.616Z Has data issue: false hasContentIssue false

Erbium Emission from Silicon Based Photonic Bandgap Materials

Published online by Cambridge University Press:  17 March 2011

Herman A. Lopez
Affiliation:
Materials Science Program, Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
J. Eduardo Lugo
Affiliation:
Centro de Investigacion en Energia UNAM, A.P. 34, C.P. 62580, Morelos, Mexico
Selena Chan
Affiliation:
Center for Future Health, Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
Sharon M. Weiss
Affiliation:
Institute of Optics, and Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
Christopher C. Striemer
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
Philippe M. Fauchet
Affiliation:
Materials Science Program, Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A Center for Future Health, Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A Institute of Optics, and Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
Get access

Abstract

Control over the 1.5 µm emission from erbium is desirable for communication and computational technologies because the erbium emission falls in the window of maximum transmission for silica based fiber optics. Tunable, narrow, directional, and enhanced erbium emission from silicon based 1-D photonic bandgap structures will be demonstrated. The structures are prepared by anodic etching of crystalline silicon and consist of two highly reflecting Bragg reflectors sandwiching an active layer. The cavities are doped by electro-migrating the erbium ions into the porous silicon matrix, followed by high temperature oxidation. By controlling the oxidation temperature, porosity, and thickness of the structure, the position of the erbium emission is tuned to emit in regions where the normal erbium emission is very weak. The erbium emission from the cavity is narrowed to a full width at half maximum (FWHM) of 12 nm with a cavity quality factor Q of 130, highly directional with a 20 degree emission cone around the normal axis, and enhanced by more than one order of magnitude when compared to its lateral emission. Erbium photoluminescence (PL) from porous silicon 2-D photonic bandgap structures is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Coffa, S., Priolo, F., Franzo, G., Bellani, V., Carnera, A., and Spinella, C., Phys. Rev. B 48, 11782 (1993).Google Scholar
[2] Lopez, H. A. and Fauchet, P. M., Appl. Phys. Lett. 75, 3989 (1999).Google Scholar
[3] Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[4] Grüning, U., Lehmann, V., Ottow, S., and Busch, K., Appl. Phys. Lett. 68, 747 (1996).Google Scholar
[5] Zijlstra, T., Drift, E. van der, Dood, M. J. A. de, Snoeks, E., and Polman, A., J. Vac. Sci. Technol. B 17, 2734 (1999).Google Scholar
[6] Leonard, S. W., Mondia, J. P., Driel, H. M. van, Toader, O., John, S., Busch, K., Birner, A., Gösele, U., and Lehmann, V., Phys. Rev. B 61, R2389 (2000).Google Scholar
[7] Lopez, H. A. and Fauchet, P. M., Proc. SPIE 3942, 87 (2000).Google Scholar
[8] Pavesi, L., Riv. Nuovo Cimento 20, 1 (1997).Google Scholar
[9] Lopez, H. A., Chen, X. L., Jenekhe, S. A., and Fauchet, P. M., J. Lumin. 80, 115 (1998).Google Scholar
[10] Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P., and Fauchet, P. M., Nature 384, 338 (1996).Google Scholar
[11] Chan, S. and Fauchet, P. M., Appl. Phys. Lett. 75, 274 (1999).Google Scholar
[12] Meerakker, J. E. A. M. van den, Elfrink, R. J. G., Roozeboom, F., and Verhoeven, J. F. C. M., J. Electrochem. Soc. 147, 2757 (2000).Google Scholar
[13] Schubert, E. F., Vredenberg, A. M., Hunt, N. E. J., Wong, Y. H., Becker, P. C., Poate, J. M., Jacobson, D. C., Feldman, L. C., and Zydzik, G. J., Appl. Phys. Lett. 61, 1381 (1992).Google Scholar
[14] Lopez, H. A. and Fauchet, P. M., Appl. Phys. Lett. 77, 3704 (2000).Google Scholar
[15] Yablonovitch, E., Gmitter, T. J., Meade, R. D., Rappe, A. M., Brommer, K. D., and Joannopoulos, J. D., Phys. Rev. Lett. 67, 3380 (1991).Google Scholar
[16] Zhou, Y., Snow, P. A., and Russell, P. St. J., Appl. Phys. Lett. 77, 2440 (2000).Google Scholar