No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Recent advances in computational condensed matter theory have yielded accurate calculations of properties of materials. These calculations have, for the most part, focused on the low temperature (T=0) limit. An accurate determination of the equation of state (EOS) at finite temperature also requires knowledge of the behavior of the electron and ion thermal pressure as a function of T. Current approaches often interpolate between calculated T=0 results and approximations valid in the high T limit. Plasma physics-based approaches are accurate in the high temperature limit, but lose accuracy below T∼Tfermi. We seek to “connect up” these two regimes by using ab initio finite temperature methods (including linear-response[l] based phonon calculations) to derive an equation of state of condensed matter for T<Tfermi.
We will present theoretical results for the principal Hugoniot of shocked materials, including carbon and aluminum, up to pressures P>100 GPa and temperatures T> 104K, and compare our results with available experimental data.