Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:13:14.307Z Has data issue: false hasContentIssue false

Epitaxial Structures For Optical Information Processing Applications: Superlattice Infrared Detectors

Published online by Cambridge University Press:  21 February 2011

Moses T. Asom*
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breiningsville PA 18031
Get access

Abstract

Advances in epitaxial growth techniques such as molecular beam epitaxy and metal organic chemical vapor deposition have facilitated the formation of high quality III-V heterostructures with dimensional control down to atomic levels, with abrupt doping and near-defect-free interfaces. The flexibility and remarkable control offered by these techniques have resulted in the fabrication of new devices based on confinement or modulation of carriers in thin III-V heterostructures. Quantum wells and superlattice based devices are expected to be utilized in optical information processing as sources, modulators, and detectors. In this paper, we will review the general epitaxial requirements for quantum wells and superlattices based devices, and discuss the fabrication and properties of a new class of infrared photodetectors that employ intraband transitions in quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Parker, E.H. Ed. The technology and physics of molecular beam epitaxy, (Plenum Press, New York, 1985).CrossRefGoogle Scholar
[2] Mendez, E.E. and Klitzing, K. von Ed. Physics and applications of Quantum Wells and Superlattices, (Plenum Press, New York, 1987).CrossRefGoogle Scholar
[3] Jewell, J.L., Lee, Y.H., Scherer, A., McCall, S.L., Olsson, N.A., Harbison, J.P., and Florez, L.T., Opt. Eng., 29, 210 (1990).CrossRefGoogle Scholar
[4] Lee, Y.H., Tell, B., Brown-Goebeler, K.F., Jewell, J.L., Leibenguth, R.E., Asom, M.T., Livescu, G., Luther, L. and Mattera, V.D., Electron Lett., 26, 1308 (1990).CrossRefGoogle Scholar
[5] Miller, D.A.B., Chelma, D.S., Damen, T.C., Wood, T.H., Burrus, C.A., Gossard, A.C. and Wiegmann, W., IEEE Journ. of Quant. Electr 21, 1462 (1985).CrossRefGoogle Scholar
[6] Capasso, F., in Gallium Arsenide Technology Ed. Ferry, D.K. (Sams, Indianpolis, 1985).Google Scholar
[7] Levine, B.F., Bethea, C.G., Choi, K.K., Walker, J., and Malik, R.J., J. Appl. Phys. 64, 1591 (1988).CrossRefGoogle Scholar
[8] Harris, J.J., Joyce, B.A. and Dobson, P.J., Surface Sci. 103,L90 (1981).CrossRefGoogle Scholar
[9] Tsui, R.K., Kramer, G.D., Curless, J.A. and Peffley, M.S., Appl. Phys. Lett., 48, 940(1986).CrossRefGoogle Scholar
[10] Wang, Y.H., Tai, K., Hsieh, Y.F., Chu, S.N.G., Wynn, J.D. and Cho, A.Y., Appl. Phys. Lett 57, 1613(1990).CrossRefGoogle Scholar
[11] Chand, N. and Chu, S.N.G., Appl. Phys. Lett. 57,1796(1990).CrossRefGoogle Scholar
[12] Alexandre, F., Goldstein, L., Leroux, G., Joncour, M.C., Thibierge, H. and Rao, E.V.K., J.Vac. Sci. Technol. B 3, 950(1985).CrossRefGoogle Scholar
[13] Petroff, P.M., Miller, R.C., Gossard, A.C. and Wiegmann, W. Appl. Phys. Lett. 44, 217(1984).CrossRefGoogle Scholar
[14] Asom, M.T., Geva, M., Leibenguth, R.E. and Chu, S.N. G, Appl. Phys. Lett. (1991).Google Scholar
[15] Levine, B.F., Malik, R.J., Walker, J., Choi, K.K., Bethea, C.G., Klienman, D.A. and Vendenberg, J.M., Appl. Phys. Lett. 50,273(1987).CrossRefGoogle Scholar
[16] Goossen, K.W. and Lyon, S.A., J. Appl. Phys. 63,5149(1988).CrossRefGoogle Scholar
[17] Coon, D.D. and Karunasiri, R.P.G., Appl. Phys. Lett. 45,649(1984)CrossRefGoogle Scholar
[18] Lyon, S.A., Surface Science 228,508(1990).CrossRefGoogle Scholar
[19] Smith, J.S., Chiu, L.C., Magalit, S., and Yariv, Y., J.Vac. Sci.Tech.B 12,376(1983).CrossRefGoogle Scholar
[20] West, L.C. and Eglash, S.J., Appl. Phys. Lett. 46,1156(1985).CrossRefGoogle Scholar
[21] Aondo, T., Fowler, A.B. and Stem, F., Rev. Mod. Phys. 54 (1982) 337.Google Scholar
[22] Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J. and Malik, R.J., Appl. Phys. Lett. 53,296(1988).CrossRefGoogle Scholar
[23] Kastalsky, A., Duffield, T., Allen, S.J., and Harbison, J., Appl. Phys. Lett. 52, 1320(1988).CrossRefGoogle Scholar
[24] Byungsung, O., Choe, J.W., Francombe, M.H., Bandara, K.M.S.V. and Coon, D.D. Appl. Phys. Lett. 57,503(1990).Google Scholar
[25] Gunapala, S.D., Levine, B.F. and Chand, N., Appl. Phys. Lett. (1991).Google Scholar
[26] Yu, L.S., Li, S.S., and Kao, Y.C., unpublishedGoogle Scholar
[27] Asom, M.T. and Leibenguth, R.E., unpublishedGoogle Scholar
[28] Anderson, J.Y. and Landgren, G., Inst. Phys. Conf. Ser. No 106, 731 (1990).Google Scholar
[29] Stayt, J. Jr., unpublishedGoogle Scholar
[30] Levine, B.F., Bethea, C.G., Hasnain, G., Chen, V.O., Pelve, E., Abott, R.R., and Hsieh, S.J., Appl. Phys. Lett. 56,851(1990).CrossRefGoogle Scholar
[31] Gunapala, S.D., Levine, B.F., Pfeiffer, L.N. and West, K.W., Appl. Phys. Lett. (1990).Google Scholar
[32] Swaminathan, V. and Asom, M.T., unpublishedGoogle Scholar
[33] Maezawa, K., Mizutani, T., Yanagawa, F., Jpn. J. Appl. Phys. 25,, L557(1986).CrossRefGoogle Scholar
[34] Bethea, C.G., unpublished.Google Scholar
[35] Levine, B.F., Bethea, C.G., Hasnain, G., Walker, J., and Malik, R.J., Appl. Phys. Lett. 53,296(1988).CrossRefGoogle Scholar